
 Pearl – Production-ready
Reinforcement Learning

 AI Agent Library
Presenters: Zheqing (Bill) Zhu, Jalaj Bhandari, Yi Wan
Contributed by: Rodrigo de Salvo Braz, Daniel Jiang, Yonathan Efroni, Liyuan Wang,
Ruiyang Xu, Hongbo Guo, Alex Nikulkov, Dmytro Korenkevych, Urun Dogan, Frank Cheng,
Zheng Wu, Wanqiao Xu

Applied Reinforcement Learning Team
AI at Meta

Agenda

01 Who We Are

02 Introducing Pearl

03 Sequential Decision Making in Real-life

04 Quick Intro to Reinforcement Learning

05 Why Pearl Stands Out

06 Pearl - Interface and Design

07 Applying Pearl for An Example Environment

08 Summary

01 Who We Are

● We own the central reinforcement learning platform that supports dozens of
applications across Meta

01 Who We Are

Applied Reinforcement Learning team @ AI at Meta

● We own the central reinforcement learning platform that supports dozens of
applications across Meta

● We conduct state-of-the-art research that helps bridge the gap between
current reinforcement learning algorithms and real-world impact

Applied Reinforcement Learning team @ AI at Meta

01 Who We Are

● We own the central reinforcement learning platform that supports dozens of
applications across Meta

● We conduct state-of-the-art research that helps bridge the gap between
current reinforcement learning algorithms and real-world impact

● We are also hands-on developing reinforcement learning agents that will
benefit people and advertisers using Meta

Applied Reinforcement Learning team @ AI at Meta

01 Who We Are

02 Introducing Pearl

Enable production-ready reinforcement learning AI agents that adapt to a
diverse set of real-world challenges.

PEARL’S MISSION

02 Introducing Pearl

● Sequential decision making is prevalent in real-world applications

● Examples: generative AI, recommender systems, robotics

● Calls for RL-based AI agents that can adapt to various real-world applications

02 Introducing Pearl

MOTIVATION

● A diverse set of reinforcement learning features that are not commonly
covered by reinforcement learning libraries

02 Introducing Pearl

HIGHLIGHTS

● A diverse set of reinforcement learning features that are not commonly
covered by reinforcement learning libraries

● An AI agent with modular design that can mix-and-match multiple
reinforcement learning features to address varieties of problems in real-life

02 Introducing Pearl

HIGHLIGHTS

● A diverse set of reinforcement learning features that are not commonly
covered by reinforcement learning libraries

● An AI agent with modular design that can mix-and-match multiple
reinforcement learning features to address varieties of problems in real-life

● Pytorch-native and easy to integrate with production systems

02 Introducing Pearl

HIGHLIGHTS

02 Introducing Pearl

QR Code for Repo

03 Sequential Decision Making in Real Life

Recommender Systems

A sequence of recommendations that
drives people’s long-term satisfaction

03 Sequential Decision Making in Real-life

Creative Selection

Explore the best creative that can
bring maximal customer traction

03 Sequential Decision Making in Real-life

Auction Pacing

Deliver maximal advertising
campaign outcome by sequentially
decide how much budget to allocate
in the next minute

03 Sequential Decision Making in Real-life

Robotics

Making decisions on how to complete
tasks in a unknown domain safely
with only part of world observable

03 Sequential Decision Making in Real-life

Supply Chain

Coordinate logistics across hundreds
of sites to maximize throughput and
minimize delay

03 Sequential Decision Making in Real-life

04 An Intro to Reinforcement Learning

Agent - Environment
Interface

04 An Intro to Reinforcement Learning

● Agent executes an action and receives an
observation and a reward from the
environment

Agent - Environment
Interface

04 An Intro to Reinforcement Learning

● Agent executes an action and receives an
observation and a reward from the
environment

● The observation might only contain limited
information and reward might be sparse

Agent - Environment
Interface

04 An Intro to Reinforcement Learning

● Agent executes an action and receives an
observation and a reward from the
environment

● The observation might only contain limited
information and reward might be sparse

● Some actions might also be dangerous

Agent - Environment
Interface

04 An Intro to Reinforcement Learning

● Agent executes an action and receives an
observation and a reward from the
environment

● The observation might only contain limited
information and reward might be sparse

● Some actions might also be dangerous

● Available actions might change over time

Optimization Target

Cumulative reward throughout the
lifetime of the agent

04 An Intro to Reinforcement Learning

Policy Learning
Find a strategy that maximizes the
cumulative reward

04 An Intro to Reinforcement Learning

Sparse Reward

Reward might only surface after a long
sequence of interactions and not often
awarded.

04 An Intro to Reinforcement Learning

Partial Observability

Agent might not always be able to see
where they are and it has to identify
where it is from the past interactions.

04 An Intro to Reinforcement Learning

Dangerous States
and Actions

There might be states and actions that
might result to catastrophic
consequences.

04 An Intro to Reinforcement Learning

Risky States
and Actions

There might be states and actions that
might have high risk of leading into bad
outcomes.

04 An Intro to Reinforcement Learning

Offline Knowledge

Agent might be able to retrieve offline
knowledge without interacting with the
target environment.

04 An Intro to Reinforcement Learning

Dynamic Available
Actions

Agents can be offered a different set of
available actions within a single
environment.

04 An Intro to Reinforcement Learning

05 Why Pearl Stands Out

Coming Back to Our Real-life Examples

05 Why Pearl Stands Out

Challenges Recommender
Systems

Sparse Reward ✓

Dangerous and Risky
State and Actions

Partial Observability ✓

Changing Action Space ✓

Offline Learning ✓

Coming Back to Our Real-life Examples

05 Why Pearl Stands Out

Challenges Recommender
Systems

Auction
bidding

Sparse Reward ✓ ✓

Dangerous and Risky
State and Actions

✓

Partial Observability ✓ ✓

Changing Action Space ✓

Offline Learning ✓ ✓

Coming Back to Our Real-life Examples

05 Why Pearl Stands Out

Challenges Recommender
Systems

Auction
bidding

Creative
Selection

Sparse Reward ✓ ✓ ✓

Dangerous and Risky
State and Actions

✓

Partial Observability ✓ ✓

Changing Action Space ✓ ✓

Offline Learning ✓ ✓ ✓

Coming Back to Our Real-life Examples

05 Why Pearl Stands Out

Challenges Recommender
Systems

Auction
bidding

Creative
Selection

Robotics

Sparse Reward ✓ ✓ ✓ ✓

Dangerous and Risky
State and Actions

✓ ✓

Partial Observability ✓ ✓ ✓

Changing Action Space ✓ ✓ ✓

Offline Learning ✓ ✓ ✓ ✓

Coming Back to Our Real-life Examples

05 Why Pearl Stands Out

Challenges Recommender
Systems

Auction
bidding

Creative
Selection

Robotics Supply
Chain

Sparse Reward ✓ ✓ ✓ ✓

Dangerous and Risky
State and Actions

✓ ✓ ✓

Partial Observability ✓ ✓ ✓ ✓

Changing Action Space ✓ ✓ ✓ ✓

Offline Learning ✓ ✓ ✓ ✓ ✓

Coming Back to Our Real-life Examples

Challenges RL Features Recommender
Systems

Auction
bidding

Creative
Selection

Robotics Supply
Chain

Sparse Reward Online
Exploration

✓ ✓ ✓ ✓

Dangerous and Risky
State and Actions

Safety ✓ ✓ ✓

Partial Observability History
Summarization

✓ ✓ ✓ ✓

Changing Action Space Dynamic Action
Space Support

✓ ✓ ✓ ✓

Offline Learning Offline RL ✓ ✓ ✓ ✓ ✓

05 Why Pearl Stands Out

05 Why Pearl Stands Out

Compare
Pearl to
Existing
Libraries

Agent Modularity

05 Why Pearl Stands Out

06 Pearl - Interface and Design

A Clear Interface between Agent and Environment

06 Pearl - Interface and Design

06 Pearl - Interface and Design

A Clear Interface between Agent and Environment

Step 1: Instantiate an agent

 # assume an environment
observation_dim = env.observation_space.shape[0]
action_space = env.action_space

agent = PearlAgent(
policy_learner=DeepQLearning(

state_dim=observation_dim,
action_space=action_space,
hidden_dims=[64, 64],

),
replay_buffer=FIFIOffPolicyReplayBuffer(

size=100000
),

)

06 Pearl - Interface and Design

Step 2: Reset the agent state and action space

optional in a product use case
observation, action_space = env.reset()

sets the agent starting state and action_space
agent.reset(observation, acton_space)

Step 3: Agent environment interaction

agent takes an action given agent’s state
action = agent.act()

execute action and get feedback, optional in product use case
action_result = env.step(action)

06 Pearl - Interface and Design

Step 4: Agent stores the environment feedback in a replay buffer

pass feedback to agent
agent.observe(action_result)

def observe(self, action_result):

update the agent state to next observation and next action space
self.state = action_result.observation
self.action_space = action_result.action_space

create a transition tuple and store in replay buffer
self.replay_buffer.push(

observation=action_result.observation,
reward=action_result.reward,
..,

)

06 Pearl - Interface and Design

Policy Learning Module

06 Pearl - Interface and Design

agent.learn()

def learn(self):

calls policy learner’s learn function with the replay buffer
self.policy_learner.learn(self.replay_buffer)

Policy learner’s learn function:

06 Pearl - Interface and Design

action = agent.act()

 def act(self) -> Action:
calls policy learner’s act function with the
current agent state and action space
action = self.policy_learner.act(

state=self.state,
action_space=self.action_space,

)

06 Pearl - Interface and Design

Policy learner’s act function:

❖ Actor-critic methods:

■ Soft actor critic (SAC), Proximal policy optimization (PPO), REINFORCE

■ Deep deterministic policy gradients (DDPG), and twin delayed version (TD3)

❖ Value-based methods: Deep Q learning and variants

❖ Distributional RL methods: Quantile regression based deep q learning

❖ Offline RL methods: Conservative Q learning, Implicit Q learning

❖ Bandit learning: Neural and linear bandit algorithms

We implement a suite of policy learning algorithms:

06 Pearl - Interface and Design

Exploration Module
● Exploration module is attached to the policy learner module for structured exploration.

06 Pearl - Interface and Design

 Instantiate a Pearl agent with exploration module

agent = PearlAgent(
policy_learner=DeepQLearning(

state_dim=observation_dim,
action_space=action_space,
hidden_dims=[64, 64],
exploration_module=EGreedyExploration(epsilon=0.05)

),
replay_buffer=FIFIOffPolicyReplayBuffer(

size=100000
),

)

06 Pearl - Interface and Design

Act function of the agent:

toggle on/off exploration (e.g. learning vs deployment)
do_exploit = False
action = agent.act(exploit=do_exploit)

def act(self, exploit: bool = False) -> Action:
calls policy learner’s act function with the
current agent state and action space
action = self.policy_learner.act(

state=self.state,
action_space=self.action_space,
exploit=exploit,

)

06 Pearl - Interface and Design

Act function of the policy learner uses the exploration module

06 Pearl - Interface and Design

We implement different algorithms:

❖ Exploration for (neural) bandit learning:

● Upper confidence bound (UCB) based exploration,
● Thompson sampling,
● Square CB

❖ Exploration for learning in sequential-decision making:

● Ensemble based deep exploration
● Epsilon greedy, for discrete action space
● Gaussian random exploration for continuous actions
● Propensity based exploration for stochastic actors

06 Pearl - Interface and Design

Safety Module
A set of two different submodules that can:

- enable risk-sensitive learning,
- enable constrained policy optimization

06 Pearl - Interface and Design

Risk sensitive learning with distributional policy learners

agent = PearlAgent(
policy_learner=QuantileRegressionDeepQLearning(

state_dim=observation_dim,
action_space=action_space,
hidden_dims=[64, 64],
exploration_module=EGreedyExploration(epsilon=0.05),

),
safety_module=QuantileNetworkMeanVarianceSafetyModule(

variance_weighting_coefficient: float = 0.2,
),
replay_buffer=FIFIOffPolicyReplayBuffer(

size=100000
),

)

06 Pearl - Interface and Design

Distributional policy learning models a distribution over Q values:

● Capture uncertainty in Q-value functions due to stochasticity in the MDP
(randomness of reward and transition probabilities).

● Implicit Quantile Networks (Dabney et. al. 2018), Quantile Regression Deep Q
learning (Dabney et. al . 2017) compute a quantile approximation to the return
distribution.

06 Pearl - Interface and Design

Policy learning with risk sensitive safety module

06 Pearl - Interface and Design

Policy learning with risk sensitive safety module

06 Pearl - Interface and Design

q_values = mean - beta*variance

Constrained policy optimization safety module

● Enables learning in constrained sequential decision making problems.

● Every state action has a cost in addition to the reward, i.e. r(s,a) and c(s,a).

● Maximize cumulative rewards, subject to cumulative costs being bounded

● We implement Reward Constrained Policy Optimization (Tessler et. al, 2019) which can be
used with different policy learners.

06 Pearl - Interface and Design

Dynamic Action Spaces
● Many real world problems (like recommender systems) require working with dynamic

action spaces.

● We enable Pearl to handle discrete dynamic action spaces.

06 Pearl - Interface and Design

Transition Batch

Sample
Batch

06 Pearl - Interface and Design

Dynamic Action Spaces: Replay Buffer Design

Example: Maximum number of 5 actions,
 2 available actions, [0, 6]

available_actions_tensor_with_padding = [

 [0],
 [6],
 [0],
 [0],
 [0],
]
 unavailable_actions_mask = [0, 0, 1, 1, 1]

Dynamic Action Spaces: Replay Buffer Design

06 Pearl - Interface and Design

Transition Batch

Set unavailable action’s
Q function to -inf Argmax over all actions

Dynamic Action Spaces: Value-Based Model Design

06 Pearl - Interface and Design

06 Pearl - Interface and Design

● Traditional Actor Neural Network

Dynamic Action Spaces: Dynamic Action Actor Neural Network

● Dynamic Action Actor Neural Network

06 Pearl - Interface and Design

● Traditional Actor Neural Network

Dynamic Action Spaces: Dynamic Action Actor Neural Network

Dynamic Action Spaces: Actor-Critic Design (learn_critic)

Transition Batch

Set unavailable action’s
Q function to 0

Expectation of Next State
value with dynamic action

actor network

Only account for these actions that
are available!

06 Pearl - Interface and Design

Dynamic Action Spaces: Actor-Critic Design (learn_critic)

Transition Batch

Set unavailable action’s
Q function to 0

Use dynamic action actor
network to assign

probabilities to available
actions

Only account for these actions that
are available!

Policy
gradient

06 Pearl - Interface and Design

History Summarization Module
● A history summarization module enables learning in partially observable

environments.

06 Pearl - Interface and Design

History Summarization with LSTM

agent = PearlAgent(
policy_learner=DeepQLearning(

state_dim=observation_dim,
action_space=env.action_space,
hidden_dims=[64, 64],
exploration_module=EGreedyExploration(epsilon=0.05),

),
history_summarization_module=LSTMHistorySummarizationModule(

observation_dim=observation_dim,
 action_dim=action_dim,
 hidden_dim=128,
 history_length=8,

),
...

)

06 Pearl - Interface and Design

Histories instead of observations are stored in the replay buffer

agent’s observe function
def observe(self, action_result):

get current history
current_history = self.history_summarization_module.get_history()

update history using the latest observation and action
self.history_summarization_module.update_history(

action_result.observation,
action_result.action,

)
new_history = self.history_summarization_module.get_history()

store histories instead of observations in the replay buffer
self.replay_buffer.push(state=current_history, ..)

06 Pearl - Interface and Design

Histories are summarized into a subjective state during policy learning

batch of histories summarized to batch of subjective state
by doing a forward pass through history summarization module

batch.state = history_summarization_module.summarize_history(
history=batch.state,

)
batch.next_state = ..

06 Pearl - Interface and Design

Histories are summarized during agent-environment interaction

get current history
compute agent’s subjective state by summarizing current history
subjective state passed to policy learner’s act function

06 Pearl - Interface and Design

agent = PearlAgent(
policy_learner=QuantileRegressionDeepQLearning(

state_dim=observation_dim,
action_space=env.action_space,
hidden_dims=[64, 64],
exploration_module=EGreedyExploration(epsilon=0.05),

),
history_summarization_module=LSTMHistorySummarizationModule(

observation_dim=observation_dim,
 action_dim=action_dim,
 hidden_dim=128,
 history_length=8,

),
safety_module=QuantileNetworkMeanVarianceSafetyModule(

variance_weighting_coefficient=0.1
),
replay_buffer=FIFIOffPolicyReplayBuffer(

size=100000
),

)

)

06 Pearl - Interface and Design

08 Summary

● Pearl is a Reinforcement Learning AI Agent Library that adapts to many
real-world sequential decision making challenges

● Pearl’s modular design offers researchers and practitioners an easy means to
combine multiple reinforcement learning features into a single agent

● Pearl’s native pytorch support and clean interface allows easy product
deployment

09 Summary

Summary

 Pearl Github Repo:

 github.com/facebookresearch/pearl

