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● We own the central reinforcement learning platform that supports dozens of 
applications across Meta

● We conduct state-of-the-art research that helps bridge the gap between 
current reinforcement learning algorithms and real-world impact

● We are also hands-on developing reinforcement learning agents that will 
benefit people and advertisers using Meta

Applied Reinforcement Learning team @ AI at Meta
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02 Introducing Pearl



Enable production-ready reinforcement learning AI agents that adapt to a 
diverse set of real-world challenges. 

PEARL’S MISSION
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● Sequential decision making is prevalent in real-world applications

● Examples: generative AI, recommender systems, robotics

● Calls for RL-based AI agents that can adapt to various real-world applications
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covered by reinforcement learning libraries
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● A diverse set of reinforcement learning features that are not commonly 
covered by reinforcement learning libraries

● An AI agent with modular design that can mix-and-match multiple 
reinforcement learning features to address varieties of problems in real-life

● Pytorch-native and easy to integrate with production systems
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Recommender Systems

A sequence of recommendations that 
drives people’s long-term satisfaction
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Creative Selection

Explore the best creative that can 
bring maximal customer traction
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Auction Pacing

Deliver maximal advertising 
campaign outcome by sequentially 
decide how much budget to allocate 
in the next minute
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Robotics

Making decisions on how to complete 
tasks in a unknown domain safely 
with only part of world observable 
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Supply Chain

Coordinate logistics across hundreds 
of sites to maximize throughput and 
minimize delay
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Agent - Environment 
Interface
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Agent - Environment 
Interface

04 An Intro to Reinforcement Learning

● Agent executes an action and receives an 
observation and a reward from the 
environment

● The observation might only contain limited 
information and reward might be sparse

● Some actions might also be dangerous

● Available actions might change over time



Optimization Target 

Cumulative reward throughout the 
lifetime of the agent 
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Policy Learning
Find a strategy that maximizes the 
cumulative reward
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Sparse Reward

Reward might only surface after a long 
sequence of interactions and not often 
awarded. 
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Partial Observability

Agent might not always be able to see 
where they are and it has to identify 
where it is from the past interactions.
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Dangerous States
and Actions

There might be states and actions that 
might result to catastrophic 
consequences.
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Risky States 
and Actions

There might be states and actions that 
might have high risk of leading into bad 
outcomes.
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Offline Knowledge

Agent might be able to retrieve offline 
knowledge without interacting with the 
target environment. 
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Dynamic Available 
Actions

Agents can be offered a different set of 
available actions within a single 
environment.
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Coming Back to Our Real-life Examples
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Challenges Recommender 
Systems

Auction 
bidding

Creative 
Selection

Robotics Supply 
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Sparse Reward ✓ ✓ ✓ ✓

Dangerous and Risky 
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Coming Back to Our Real-life Examples

Challenges RL Features Recommender 
Systems

Auction 
bidding

Creative 
Selection

Robotics Supply 
Chain

Sparse Reward Online 
Exploration

✓ ✓ ✓ ✓

Dangerous and Risky 
State and Actions

Safety ✓ ✓ ✓

Partial Observability History 
Summarization

✓ ✓ ✓ ✓

Changing Action Space Dynamic Action 
Space Support

✓ ✓ ✓ ✓

Offline Learning Offline RL ✓ ✓ ✓ ✓ ✓
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Compare 
Pearl to 
Existing 
Libraries

Agent Modularity
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A Clear Interface between Agent and Environment
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A Clear Interface between Agent and Environment



Step 1: Instantiate an agent

  # assume an environment
observation_dim = env.observation_space.shape[0]
action_space = env.action_space

agent = PearlAgent(
policy_learner=DeepQLearning(

state_dim=observation_dim,
action_space=action_space,
hidden_dims=[64, 64],

),
replay_buffer=FIFIOffPolicyReplayBuffer(

size=100000
),

)
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Step 2: Reset the agent state and action space 

# optional in a product use case
observation, action_space = env.reset()

# sets the agent starting state and action_space
agent.reset(observation, acton_space)

Step 3: Agent environment interaction

# agent takes an action given agent’s state
action = agent.act()

# execute action and get feedback, optional in product use case
action_result = env.step(action)
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Step 4: Agent stores the environment feedback in a replay buffer 

# pass feedback to agent 
agent.observe(action_result)

def observe(self, action_result):

# update the agent state to next observation and next action space
self.state = action_result.observation
self.action_space = action_result.action_space

# create a transition tuple and store in replay buffer
self.replay_buffer.push(

observation=action_result.observation,
reward=action_result.reward,
..,

)
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Policy Learning Module
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agent.learn()

def learn(self):

# calls policy learner’s learn function with the replay buffer
self.policy_learner.learn(self.replay_buffer)

Policy learner’s learn function:
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action = agent.act()

  def act(self) -> Action:
# calls policy learner’s act function with the 
# current agent state and action space
action = self.policy_learner.act(

state=self.state,
action_space=self.action_space,

)
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Policy learner’s act function:



❖ Actor-critic methods:

■ Soft actor critic (SAC), Proximal policy optimization (PPO), REINFORCE

■ Deep deterministic policy gradients (DDPG), and twin delayed version (TD3)

❖ Value-based methods: Deep Q learning and variants 

❖ Distributional RL methods: Quantile regression based deep q learning

❖ Offline RL methods: Conservative Q learning, Implicit Q learning

❖ Bandit learning: Neural and linear bandit algorithms

We implement a suite of policy learning algorithms:
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Exploration Module
● Exploration module is attached to the policy learner module for structured exploration. 
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 Instantiate a Pearl agent with exploration module

agent = PearlAgent(
policy_learner=DeepQLearning(

state_dim=observation_dim,
action_space=action_space,
hidden_dims=[64, 64],
exploration_module=EGreedyExploration(epsilon=0.05)

),
replay_buffer=FIFIOffPolicyReplayBuffer(

size=100000
),

  )
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Act function of the agent:

# toggle on/off exploration (e.g. learning vs deployment)
do_exploit = False
action = agent.act(exploit=do_exploit)

def act(self, exploit: bool = False) -> Action:
# calls policy learner’s act function with the 
# current agent state and action space
action = self.policy_learner.act(

state=self.state,
action_space=self.action_space,
exploit=exploit,

)
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Act function of the policy learner uses the exploration module
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We implement different algorithms:

❖ Exploration for (neural) bandit learning: 

● Upper confidence bound (UCB) based exploration, 
● Thompson sampling, 
● Square CB

❖ Exploration for learning in sequential-decision making:

● Ensemble based deep exploration
● Epsilon greedy, for discrete action space
● Gaussian random exploration for continuous actions
● Propensity based exploration for stochastic actors 
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Safety Module
A set of two different submodules that can:

- enable risk-sensitive learning, 
- enable constrained policy optimization 
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Risk sensitive learning with distributional policy learners

agent = PearlAgent(
policy_learner=QuantileRegressionDeepQLearning(

state_dim=observation_dim,
action_space=action_space,
hidden_dims=[64, 64],
exploration_module=EGreedyExploration(epsilon=0.05),

),
safety_module=QuantileNetworkMeanVarianceSafetyModule(

variance_weighting_coefficient: float = 0.2,
),
replay_buffer=FIFIOffPolicyReplayBuffer(

size=100000
),

)
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Distributional policy learning models a distribution over Q values:

● Capture uncertainty in Q-value functions due to stochasticity in the MDP 
(randomness of reward and transition probabilities).

● Implicit Quantile Networks (Dabney et. al. 2018), Quantile Regression Deep Q 
learning (Dabney et. al . 2017) compute  a quantile approximation to the return 
distribution. 
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Policy learning with risk sensitive safety module
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Policy learning with risk sensitive safety module

06 Pearl - Interface and Design

q_values = mean - beta*variance



Constrained policy optimization safety module

● Enables learning in constrained sequential decision making problems.

● Every state action has a cost in addition to the reward, i.e.  r(s,a) and c(s,a).

● Maximize cumulative rewards, subject to cumulative costs being bounded

● We implement Reward Constrained Policy Optimization (Tessler et. al, 2019) which can be 
used with different policy learners.
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Dynamic Action Spaces
● Many real world problems (like recommender systems) require working with dynamic 

action spaces.

● We enable Pearl to handle discrete dynamic action spaces.
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Transition Batch

Sample 
Batch
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Dynamic Action Spaces: Replay Buffer Design



Example: Maximum number of 5 actions, 
        2 available actions, [0, 6]

    
available_actions_tensor_with_padding = [

        [0],
        [6],
        [0],
        [0],
        [0],
    ]
    unavailable_actions_mask = [0, 0, 1, 1, 1]

Dynamic Action Spaces: Replay Buffer Design
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Transition Batch

Set unavailable action’s 
Q function to -inf Argmax over all actions

Dynamic Action Spaces: Value-Based Model Design
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● Dynamic Action Actor Neural Network
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Dynamic Action Spaces: Dynamic Action Actor Neural Network



Dynamic Action Spaces: Actor-Critic Design (learn_critic)

Transition Batch

Set unavailable action’s 
Q function to 0

Expectation of Next State 
value with dynamic action 

actor network

Only account for these actions that 
are available!
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Dynamic Action Spaces: Actor-Critic Design (learn_critic)

Transition Batch

Set unavailable action’s 
Q function to 0

Use dynamic action actor 
network to assign 

probabilities to available 
actions 

Only account for these actions that 
are available!

Policy 
gradient
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History Summarization Module
● A history summarization module enables learning in partially observable 

environments. 
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History Summarization with LSTM

agent = PearlAgent(
policy_learner=DeepQLearning(

state_dim=observation_dim,
action_space=env.action_space,
hidden_dims=[64, 64],
exploration_module=EGreedyExploration(epsilon=0.05),

),
history_summarization_module=LSTMHistorySummarizationModule(

observation_dim=observation_dim,
       action_dim=action_dim,
       hidden_dim=128,
       history_length=8,

),
...

)
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Histories instead of observations are stored in the replay buffer

# agent’s observe function
def observe(self, action_result):

# get current history
current_history = self.history_summarization_module.get_history()

# update history using the latest observation and action
self.history_summarization_module.update_history(

action_result.observation,
action_result.action,

)
new_history = self.history_summarization_module.get_history()

# store histories instead of observations in the replay buffer
self.replay_buffer.push(state=current_history, .. )
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Histories are summarized into a subjective state during policy learning

# batch of histories summarized to batch of subjective state
# by doing a forward pass through history summarization module

batch.state = history_summarization_module.summarize_history(
history=batch.state,

)
batch.next_state = ..
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Histories are summarized during agent-environment interaction

# get current history
# compute agent’s subjective state by summarizing current history
# subjective state passed to policy learner’s act function 
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agent = PearlAgent(
policy_learner=QuantileRegressionDeepQLearning(

state_dim=observation_dim,
action_space=env.action_space,
hidden_dims=[64, 64],
exploration_module=EGreedyExploration(epsilon=0.05),

),
history_summarization_module=LSTMHistorySummarizationModule(

observation_dim=observation_dim,
       action_dim=action_dim,
       hidden_dim=128,
       history_length=8,

),
safety_module=QuantileNetworkMeanVarianceSafetyModule(

variance_weighting_coefficient=0.1
),
replay_buffer=FIFIOffPolicyReplayBuffer(

size=100000
),

)

)
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08 Summary



● Pearl is a Reinforcement Learning AI Agent Library that adapts to many 
real-world sequential decision making challenges 

● Pearl’s modular design offers researchers and practitioners an easy means to 
combine multiple reinforcement learning features into a single agent

● Pearl’s native pytorch support and clean interface allows easy product 
deployment
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                           Pearl Github Repo:
 

  github.com/facebookresearch/pearl
                




