Pearl – Production-ready Reinforcement Learning Al Agent Library

Presenters: Zheqing (Bill) Zhu, Jalaj Bhandari, Yi Wan

Contributed by: Rodrigo de Salvo Braz, Daniel Jiang, Yonathan Efroni, Liyuan Wang, Ruiyang Xu, Hongbo Guo, Alex Nikulkov, Dmytro Korenkevych, Urun Dogan, Frank Cheng, Zheng Wu, Wanqiao Xu

Applied Reinforcement Learning Team Al at Meta

- 01 Who We Are
- 02 Introducing Pearl
- 03 Sequential Decision Making in Real-life
- 04 Quick Intro to Reinforcement Learning
- 05 Why Pearl Stands Out
- 06 Pearl Interface and Design
- 07 Applying Pearl for An Example Environment
- 08 Summary

Agenda

01 | Who We Are

Applied Reinforcement Learning team @ Al at Meta

• We own the central reinforcement learning platform that supports dozens of applications across Meta

Applied Reinforcement Learning team @ AI at Meta

- We own the central reinforcement learning platform that supports dozens of applications across Meta
- We conduct state-of-the-art research that helps bridge the gap between current reinforcement learning algorithms and real-world impact

Applied Reinforcement Learning team @ AI at Meta

- We own the central reinforcement learning platform that supports dozens of applications across Meta
- We conduct state-of-the-art research that helps bridge the gap between current reinforcement learning algorithms and real-world impact
- We are also hands-on developing reinforcement learning agents that will benefit people and advertisers using Meta

PEARL'S MISSION

Enable production-ready reinforcement learning AI agents that adapt to a diverse set of real-world challenges.

MOTIVATION

- Sequential decision making is prevalent in real-world applications
- Examples: generative AI, recommender systems, robotics
- Calls for RL-based AI agents that can adapt to various real-world applications

HIGHLIGHTS

• A diverse set of reinforcement learning features that are not commonly covered by reinforcement learning libraries

HIGHLIGHTS

- A diverse set of reinforcement learning features that are not commonly covered by reinforcement learning libraries
- An AI agent with **modular design** that can **mix-and-match** multiple reinforcement learning features to address varieties of problems in real-life

HIGHLIGHTS

- A diverse set of reinforcement learning features that are not commonly covered by reinforcement learning libraries
- An AI agent with **modular design** that can **mix-and-match** multiple reinforcement learning features to address varieties of problems in real-life
- Pytorch-native and easy to integrate with production systems

QR Code for Repo

Recommender Systems

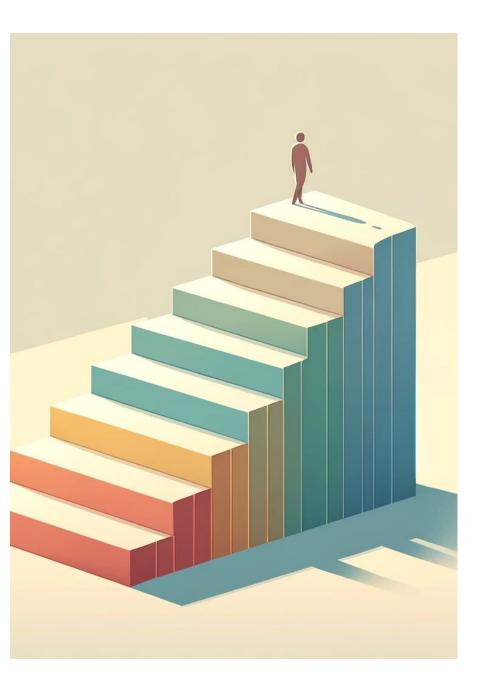
A sequence of recommendations that drives people's long-term satisfaction

Creative Selection

Explore the best creative that can bring maximal customer traction

Auction Pacing

Deliver maximal advertising campaign outcome by sequentially decide how much budget to allocate in the next minute



Robotics

Making decisions on how to complete tasks in a unknown domain safely with only part of world observable

Supply Chain

Coordinate logistics across hundreds of sites to maximize throughput and minimize delay

04 An Intro to Reinforcement Learning

Agent executes an action and receives an observation and a reward from the environment

- Agent executes an action and receives an observation and a reward from the environment
- The observation might only contain limited information and reward might be sparse

- Agent executes an action and receives an observation and a reward from the environment
- The observation might only contain limited information and reward might be sparse
- Some actions might also be dangerous

- Agent executes an action and receives an observation and a reward from the environment
- The observation might only contain limited information and reward might be sparse
- Some actions might also be dangerous
- Available actions might change over time

Optimization Target

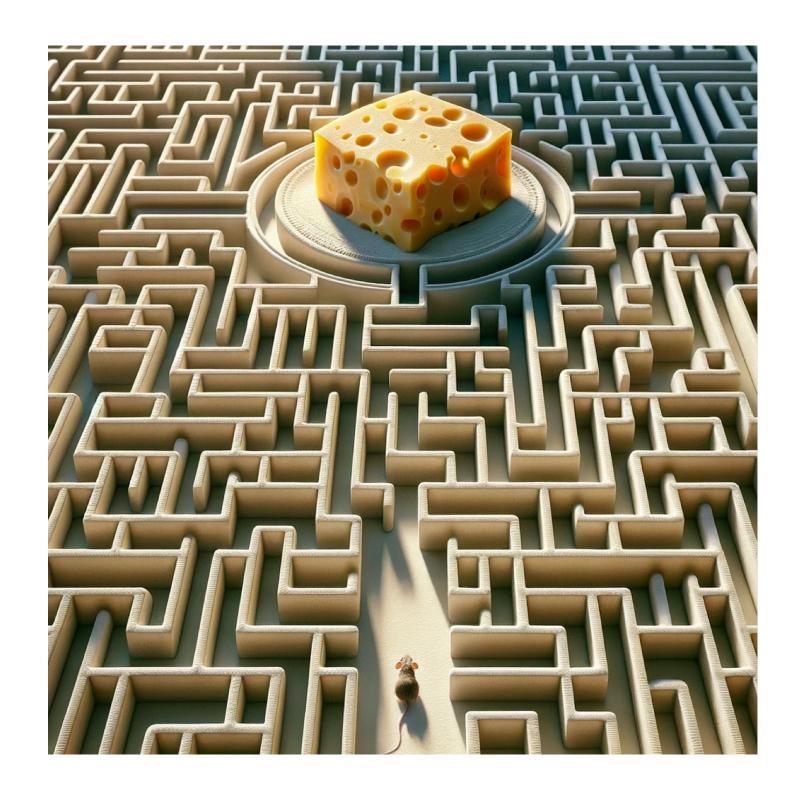
Cumulative reward throughout the lifetime of the agent

Policy Learning

Find a strategy that maximizes the cumulative reward

Sparse Reward

Reward might only surface after a long sequence of interactions and not often awarded.



Partial Observability

Agent might not always be able to see where they are and it has to identify where it is from the past interactions.

Dangerous States and Actions

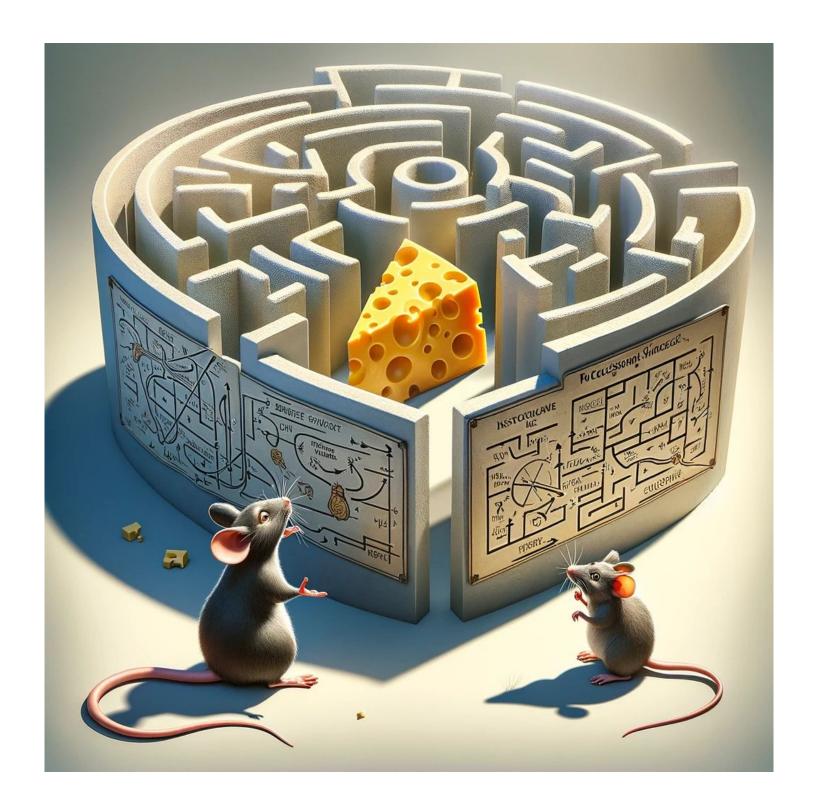
There might be states and actions that might result to catastrophic consequences.

Risky States and Actions

There might be states and actions that might have high risk of leading into bad outcomes.

Offline Knowledge

Agent might be able to retrieve offline knowledge without interacting with the target environment.



Dynamic Available Actions

Agents can be offered a different set of available actions within a single environment.

05 Why Pearl Stands Out

Coming Back to Our Real-life Examples

Challenges	Recommender Systems		
Sparse Reward	✓		
Dangerous and Risky State and Actions			
Partial Observability	✓		
Changing Action Space	✓		
Offline Learning	√		

Coming Back to Our Real-life Examples

Challenges	Recommender Systems	Auction bidding		
Sparse Reward				
Dangerous and Risky State and Actions		 ✓ 		
Partial Observability	✓	✓		
Changing Action Space				
Offline Learning		√		

Coming Back to Our Real-life Examples

Challenges	Recommender Systems	Auction bidding	Creative Selection	
Sparse Reward		-	✓	
Dangerous and Risky State and Actions		 ✓ 		
Partial Observability	✓	•		
Changing Action Space	✓		✓	
Offline Learning		1	√	

Coming Back to Our Real-life Examples

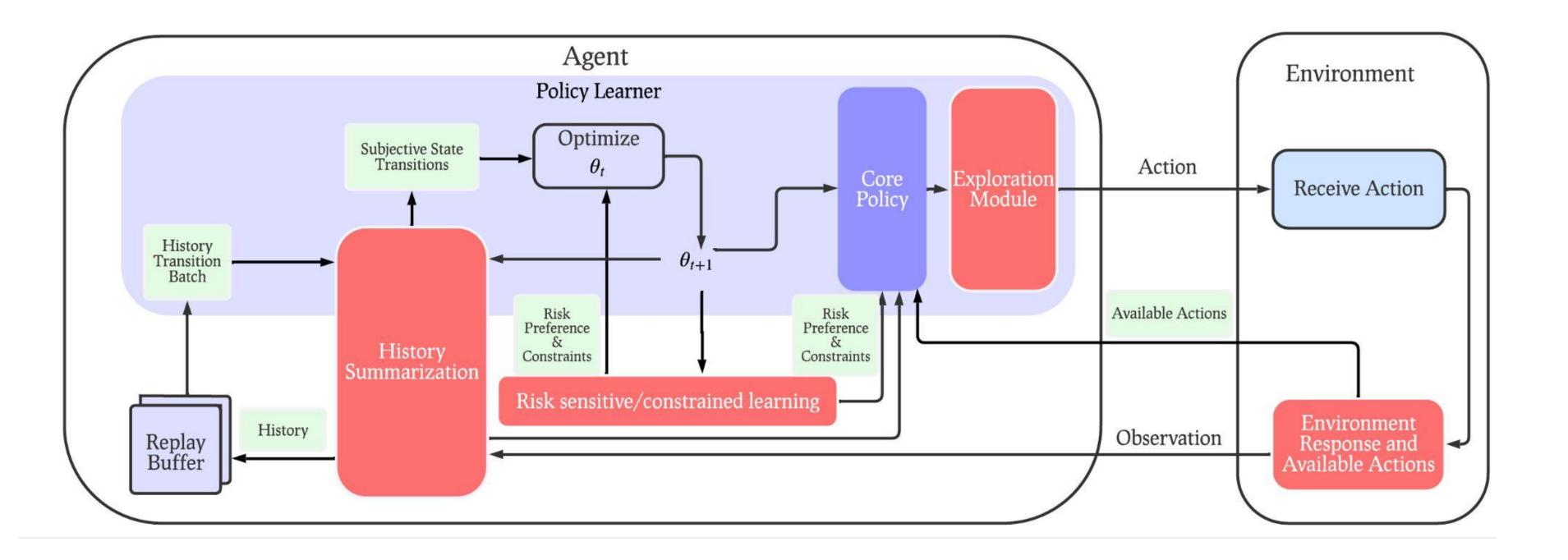
Challenges	Recommender Systems	Auction bidding	Creative Selection	Robotics	
Sparse Reward		-	✓		
Dangerous and Risky State and Actions		-			
Partial Observability	✓	•			
Changing Action Space	✓		1		
Offline Learning	✓	√	✓		

Coming Back to Our Real-life Examples

Challenges	Recommender Systems	Auction bidding	Creative Selection	Robotics	Supply Chain
Sparse Reward		-	✓	-	
Dangerous and Risky State and Actions		 Image: A set of the set of the		✓	✓
Partial Observability	✓	✓		•	✓
Changing Action Space	✓		✓		✓
Offline Learning		1	√		✓

Coming Back to Our Real-life Examples

Challenges	RL Features	Recommender Systems	Auction bidding	Creative Selection	Robotics	Supply Chain
Sparse Reward	Online Exploration	✓	✓	✓	✓	
Dangerous and Risky State and Actions	Safety		✓		✓	✓
Partial Observability	History Summarization	✓	√			√
Changing Action Space	Dynamic Action Space Support	✓		✓		✓
Offline Learning	Offline RL		√	✓		✓

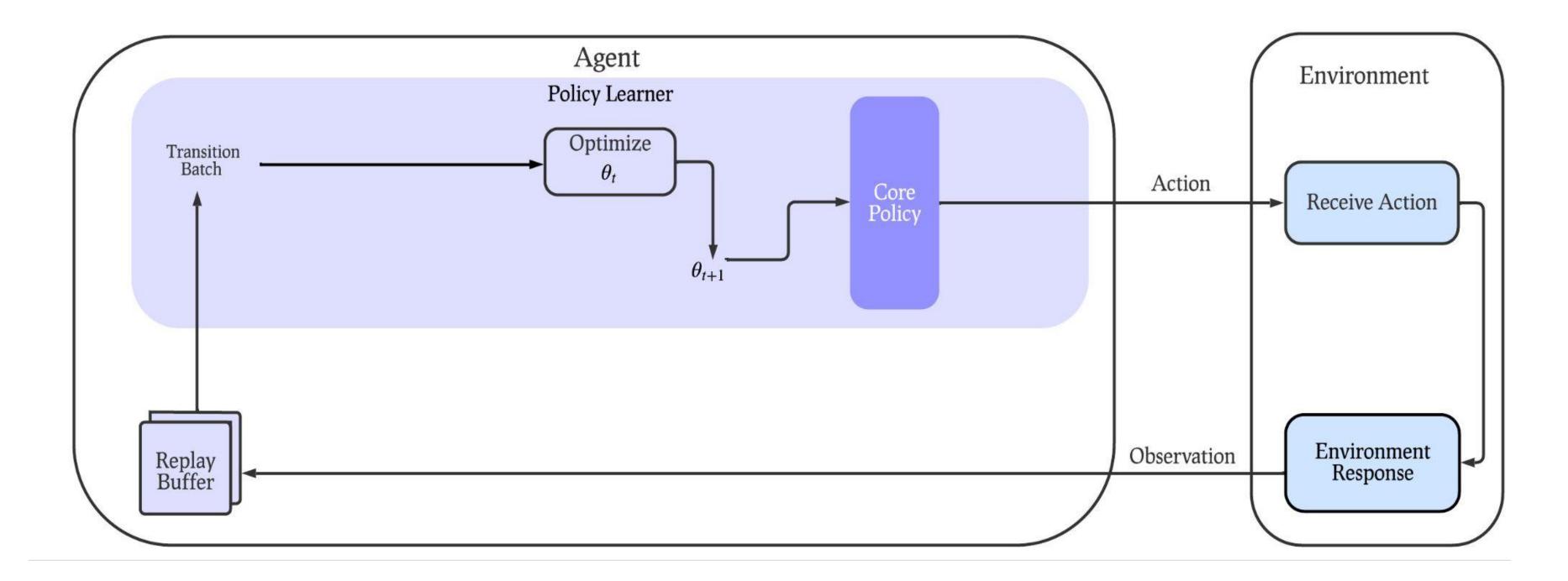


Compare Pearl to Existing Libraries

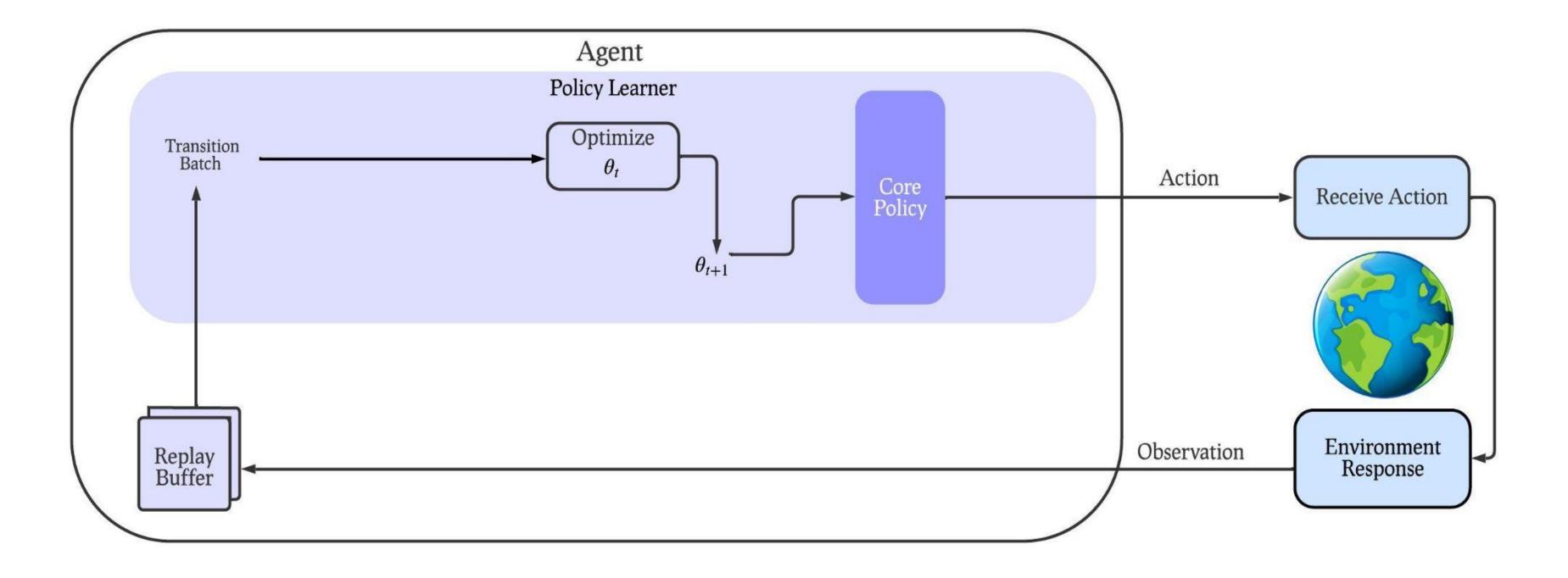
Pearl Features	Pearl	ReAgent (Superseded by Pearl)	RLLib	SB3	Tianshou	Dopamine
Agent Modularity		×	×	×	×	×
Dynamic Action Space			×	×	×	×
Offline RL						×
Intelligent Exploration		×	×	×	(limited support)	×
Contextual Bandit			(only linear support)	×	×	×
Safe Decision Making		×	×	×	×	×
History Summarization		×		×	(requires modifying environment state)	×
Data Augmented Replay Buffer		×				×

Pearl - Interface and Design

A Clear Interface between Agent and Environment



A Clear Interface between Agent and Environment



Step 1: Instantiate an agent

```
# assume an environment
observation_dim = env.observation_space.shape[0]
action_space = env.action_space
```

```
agent = PearlAgent(
    policy_learner=DeepQLearning(
        state_dim=observation_dim,
        action_space=action_space,
        hidden_dims=[64, 64],
    ),
    replay_buffer=FIFIOffPolicyReplayBuffer(
        size=100000
    ),
```


Step 2: Reset the agent state and action space

optional in a product use case observation, action_space = env.reset()

sets the agent starting state and action_space agent.reset(observation, acton_space)

Step 3: Agent environment interaction

agent takes an action given agent's state action = agent.act()

execute action and get feedback, optional in product use case action_result = env.step(action)

•••

Step 4: Agent stores the environment feedback in a replay buffer

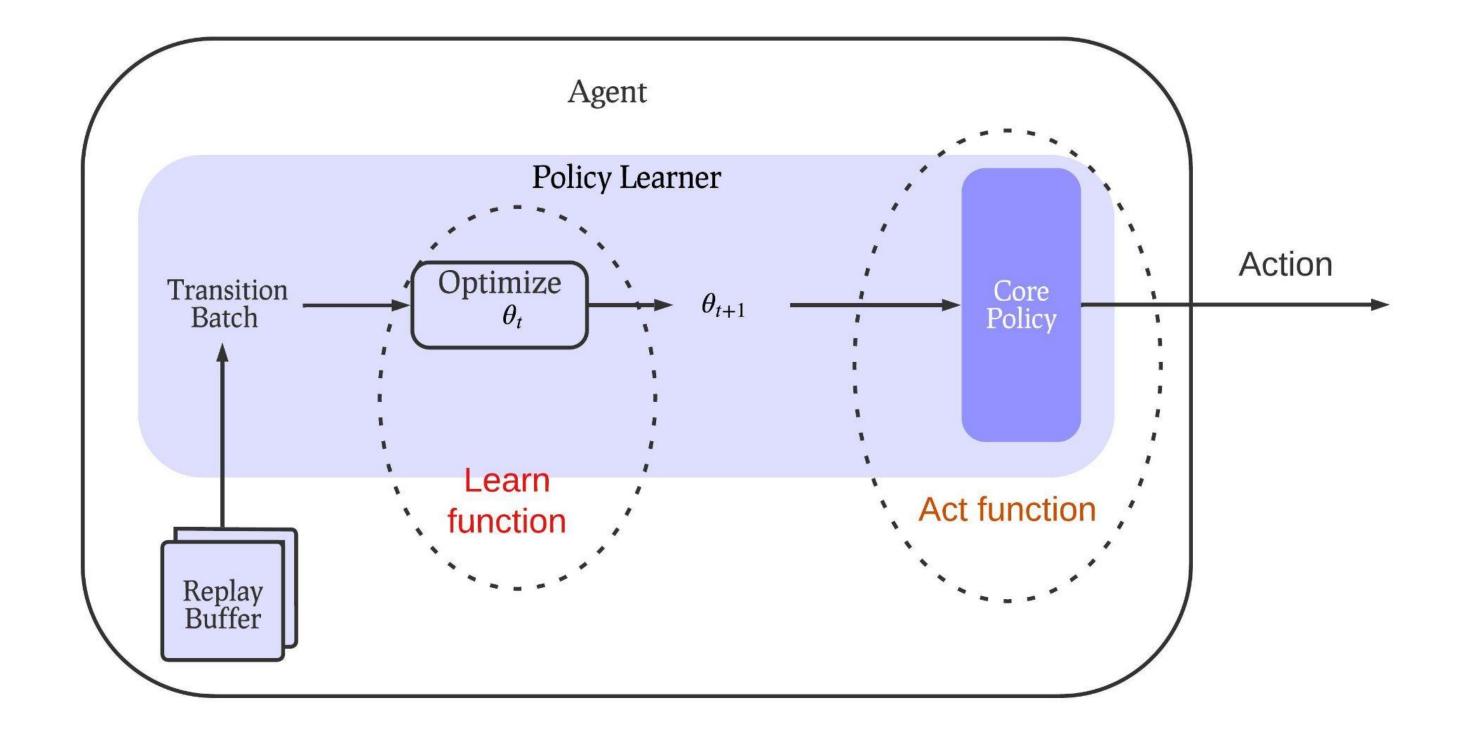
pass feedback to agent agent.observe(action_result)

def observe(self, action_result):

update the agent state to next observation and next action space self.state = action_result.observation self.action_space = action_result.action_space

create a transition tuple and store in replay buffer self.replay_buffer.push(observation=action_result.observation, reward=action_result.reward,

Policy Learning Module

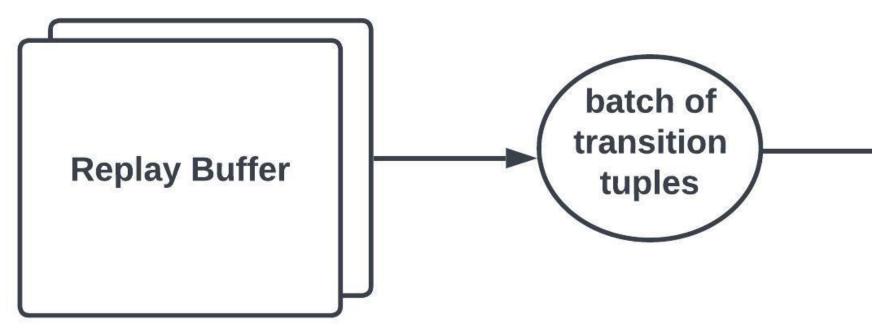


Policy learner's learn function:

agent.learn()

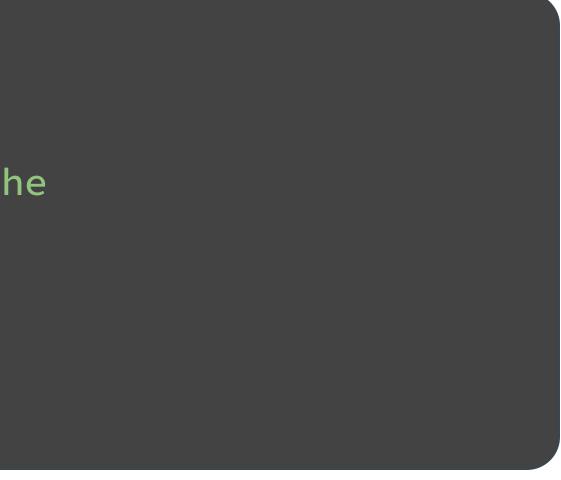
def learn(self):

calls policy learner's learn function with the replay buffer self.policy_learner.learn(self.replay_buffer)



Policy learner's act function:

```
action = agent.act()
def act(self) -> Action:
    # calls policy learner's act function with the
    # current agent state and action space
    action = self.policy_learner.act(
        state=self.state,
        action_space=self.action_space,
    )
```

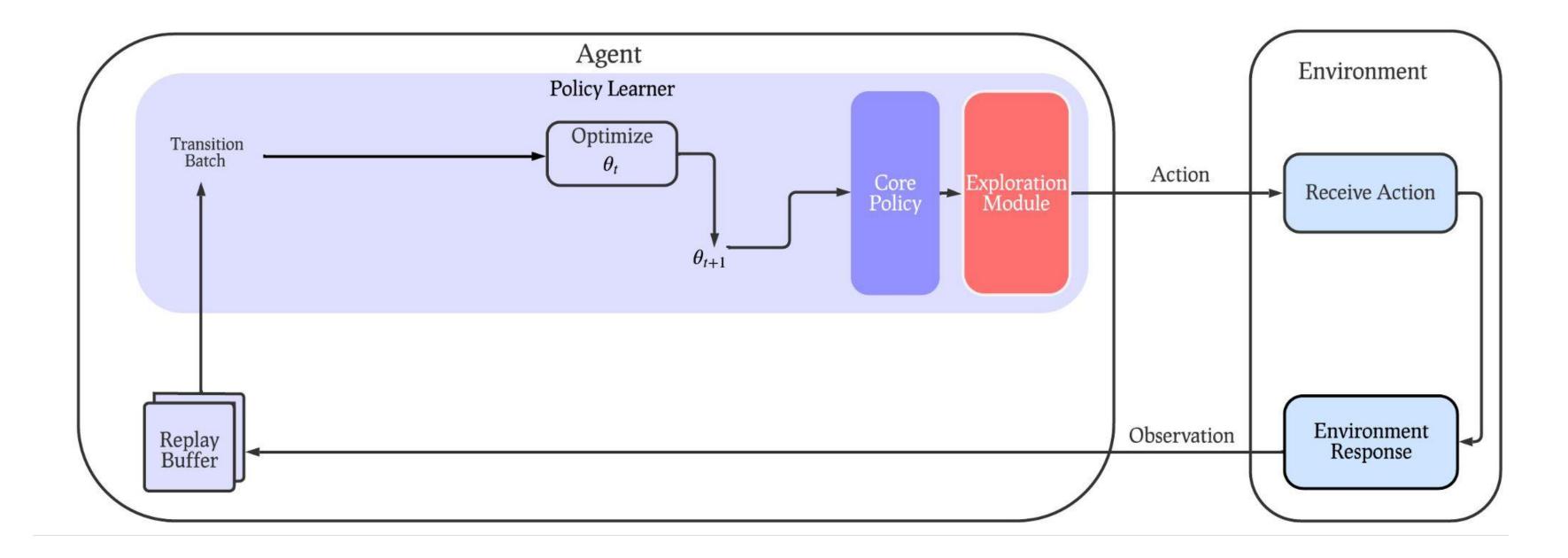


We implement a suite of policy learning algorithms:

- Actor-critic methods:
 - Soft actor critic (SAC), Proximal policy optimization (PPO), REINFORCE
 - Deep deterministic policy gradients (DDPG), and twin delayed version (TD3)
- Value-based methods: Deep Q learning and variants
- Distributional RL methods: Quantile regression based deep q learning
- **Offline RL methods:** Conservative Q learning, Implicit Q learning
- **Bandit learning:** Neural and linear bandit algorithms

Exploration Module

• Exploration module is attached to the policy learner module for structured exploration.



Instantiate a Pearl agent with exploration module

```
agent = PearlAgent(
    policy_learner=DeepQLearning(
        state_dim=observation_dim,
        action_space=action_space,
        hidden_dims=[64, 64],
        exploration_module=EGreedyExploration
    ),
    replay_buffer=FIFIOffPolicyReplayBuffer(
        size=100000
    ),
)
```

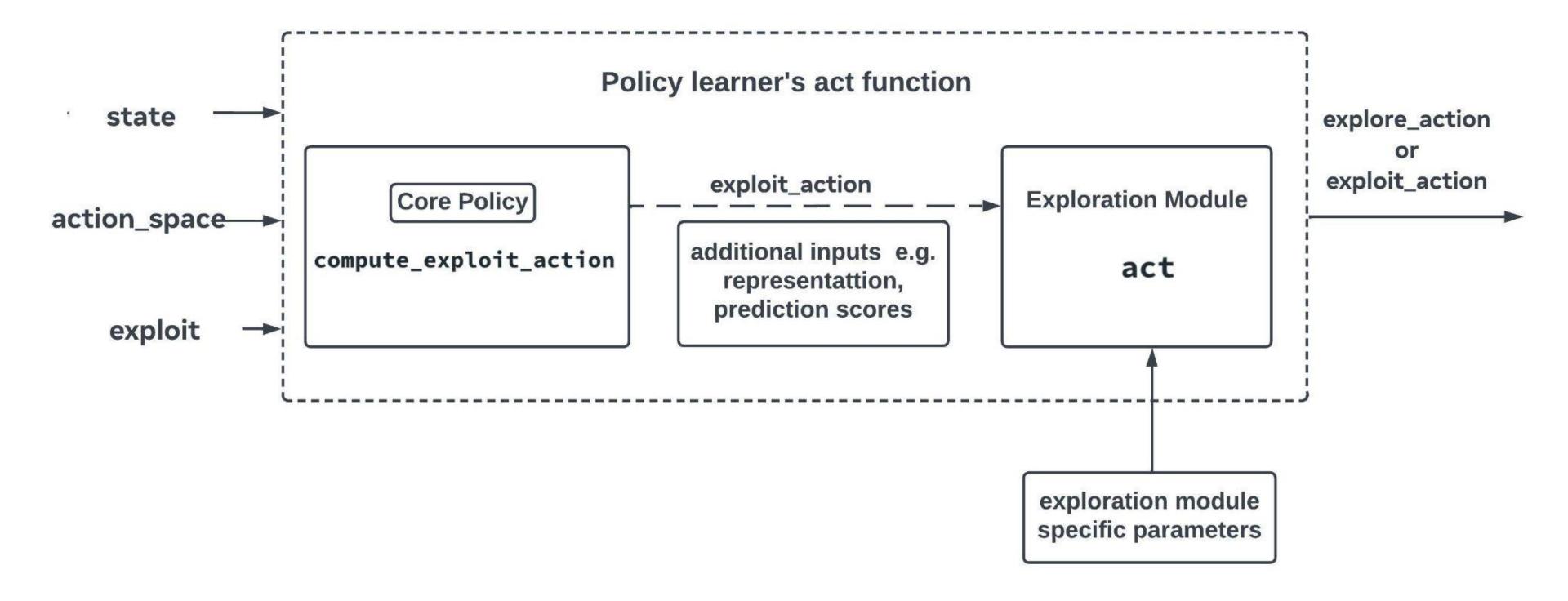
epsilon=0.05)

Act function of the agent:

toggle on/off exploration (e.g. learning vs deployment) do_exploit = False action = agent.act(exploit=do_exploit)

def act(self, exploit: bool = False) -> Action: # calls policy learner's act function with the # current agent state and action space action = self.policy_learner.act(state=self.state, action_space=self.action_space, exploit=exploit,

Act function of the policy learner uses the exploration module



We implement different algorithms:

Exploration for (neural) bandit learning:

- Upper confidence bound (UCB) based exploration,
- Thompson sampling,
- Square CB

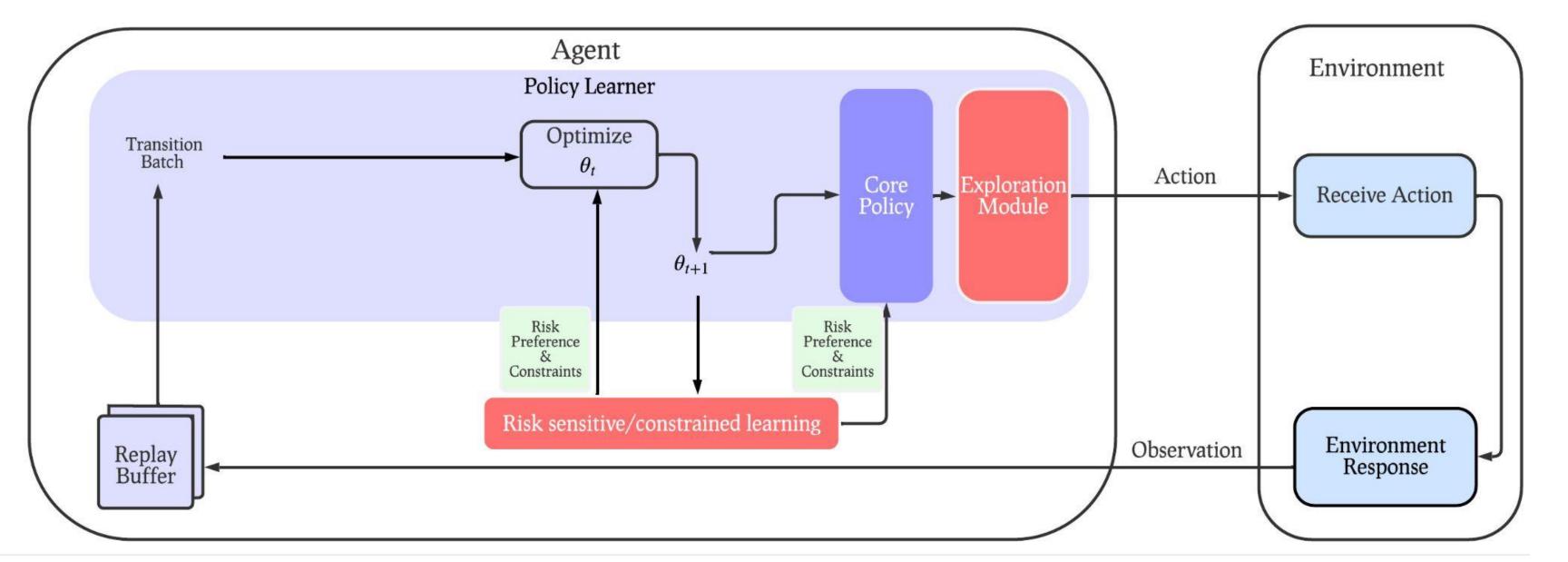
Exploration for learning in sequential-decision making:

- Ensemble based deep exploration
- Epsilon greedy, for discrete action space
- Gaussian random exploration for continuous actions
- Propensity based exploration for stochastic actors

Safety Module

A set of two different submodules that can:

- enable risk-sensitive learning,
- enable constrained policy optimization

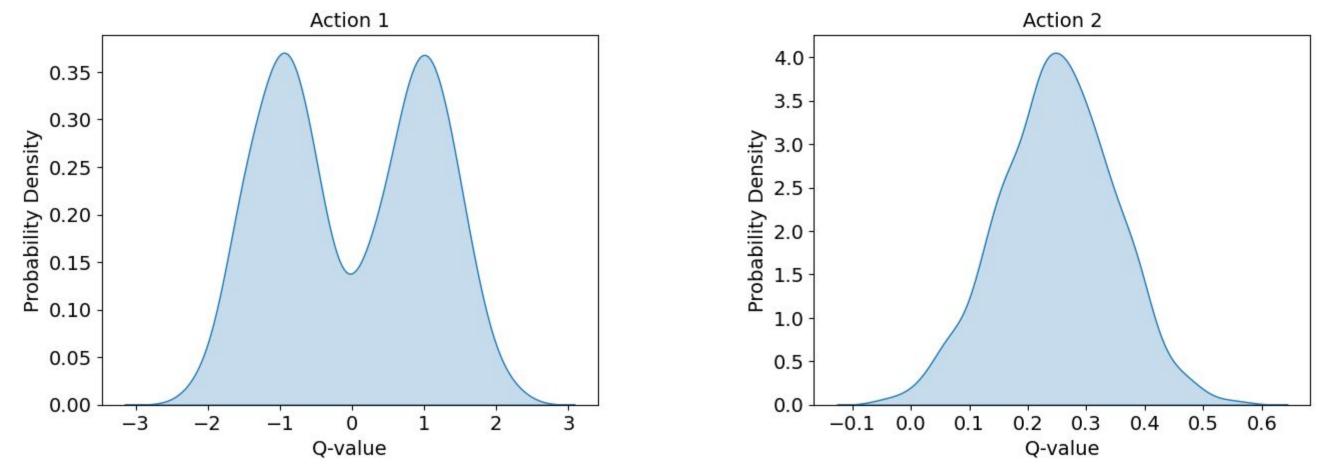


Risk sensitive learning with distributional policy learners

```
agent = PearlAgent(
    policy_learner=QuantileRegressionDeepQLearning(
       state_dim=observation_dim,
       action_space=action_space,
       hidden_dims=[64, 64],
       exploration_module=EGreedyExploration(epsilon=0.05)
   ),
   replay_buffer=FIFIOffPolicyReplayBuffer(
       size=100000
    ),
```

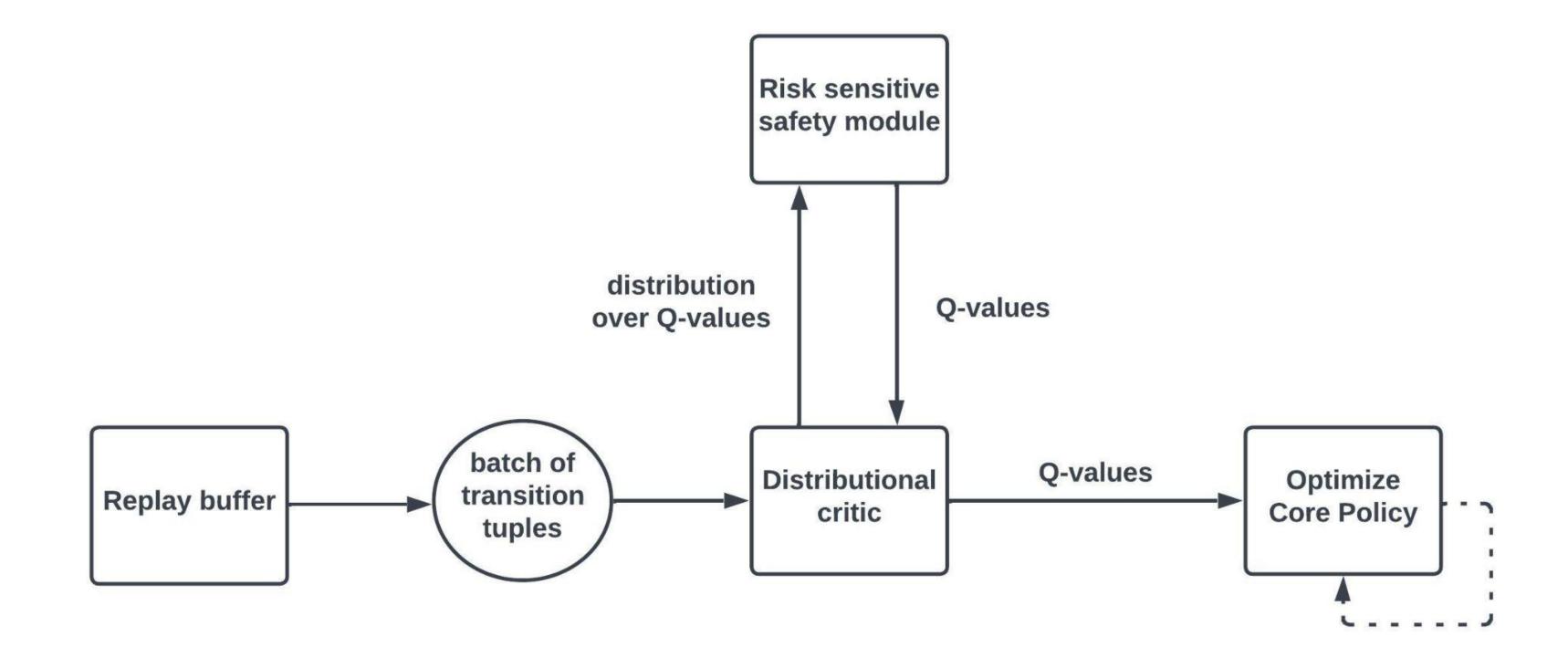

Distributional policy learning models a distribution over Q values:

Capture uncertainty in Q-value functions due to stochasticity in the MDP (randomness of reward and transition probabilities).

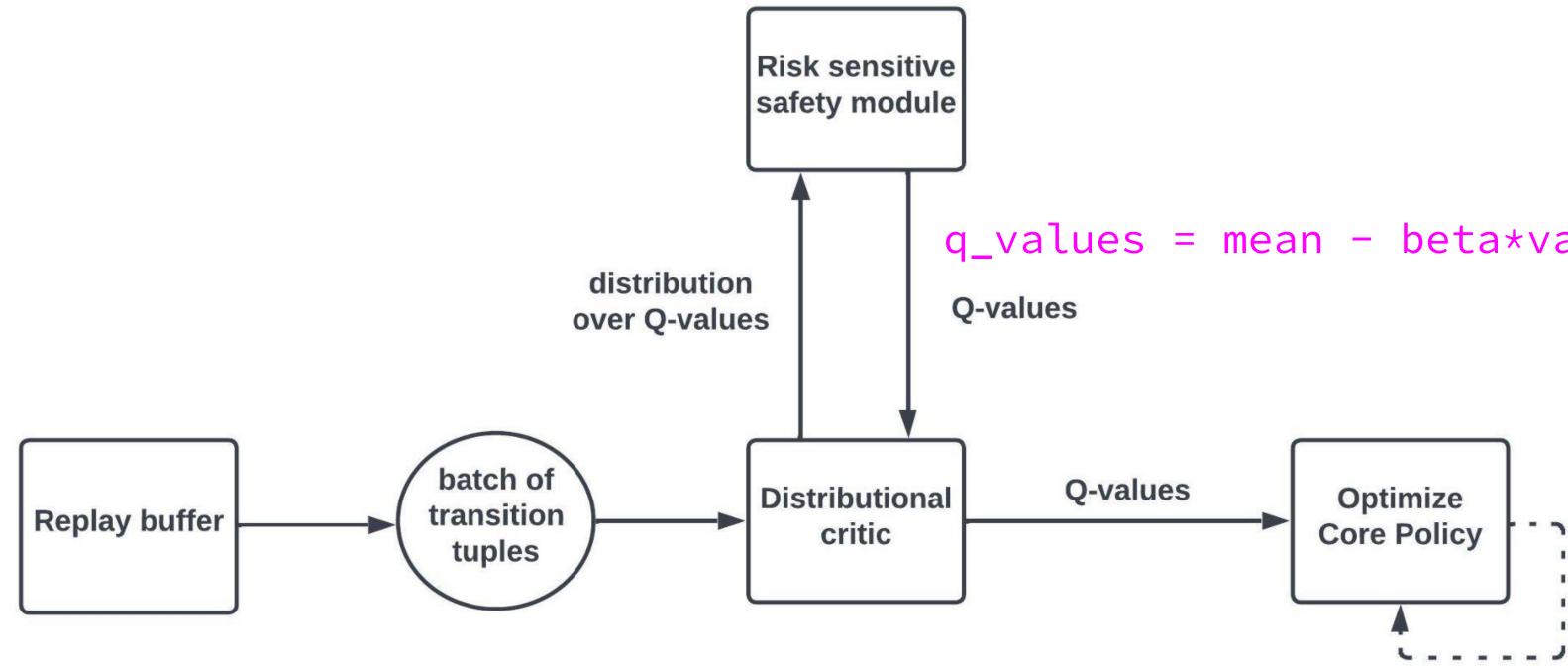


Implicit Quantile Networks (<u>Dabney et. al. 2018</u>), Quantile Regression Deep Q learning (<u>Dabney et. al. 2017</u>) compute a quantile approximation to the return distribution.

Policy learning with risk sensitive safety module



Policy learning with risk sensitive safety module



q_values = mean - beta*variance

Constrained policy optimization safety module

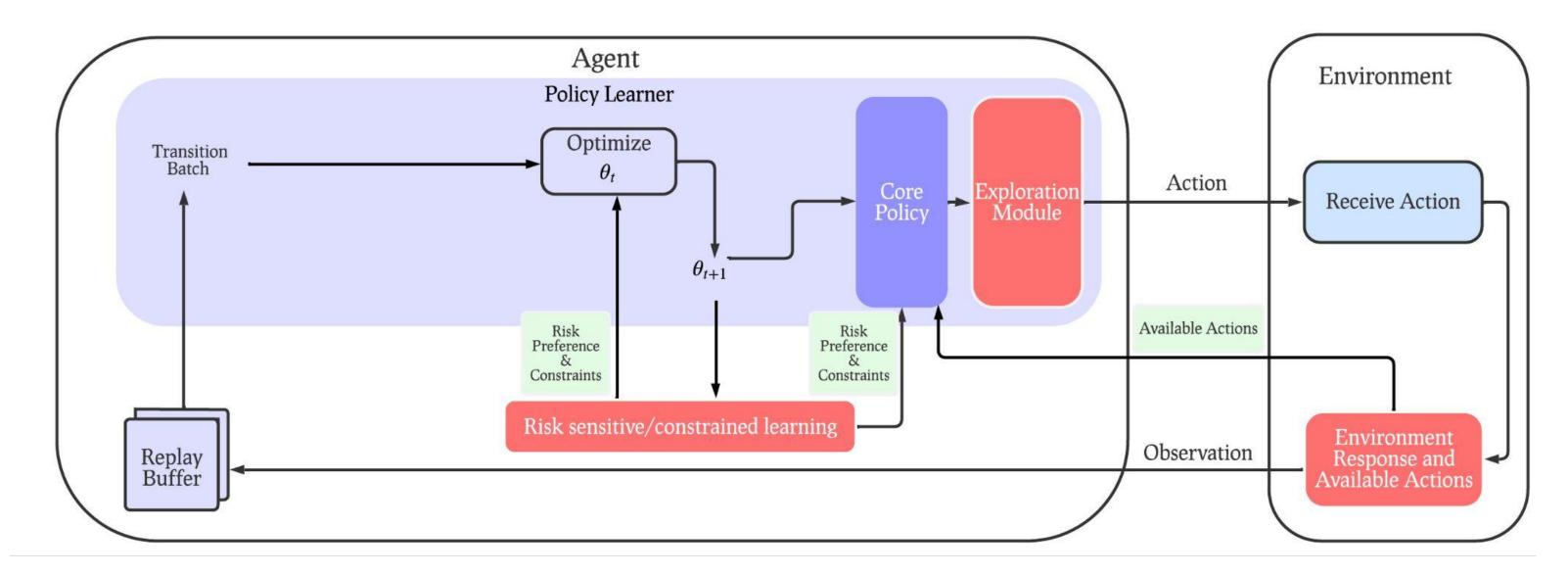
- Enables learning in constrained sequential decision making problems.
- Every state action has a cost in addition to the reward, i.e. r(s,a) and c(s,a).
- Maximize cumulative rewards, subject to cumulative costs being bounded

$$\mathbb{E}_{\pi} \Big[\sum_{t} \gamma^{t} c(s_{t}, a_{t}) \Big] \leq c$$

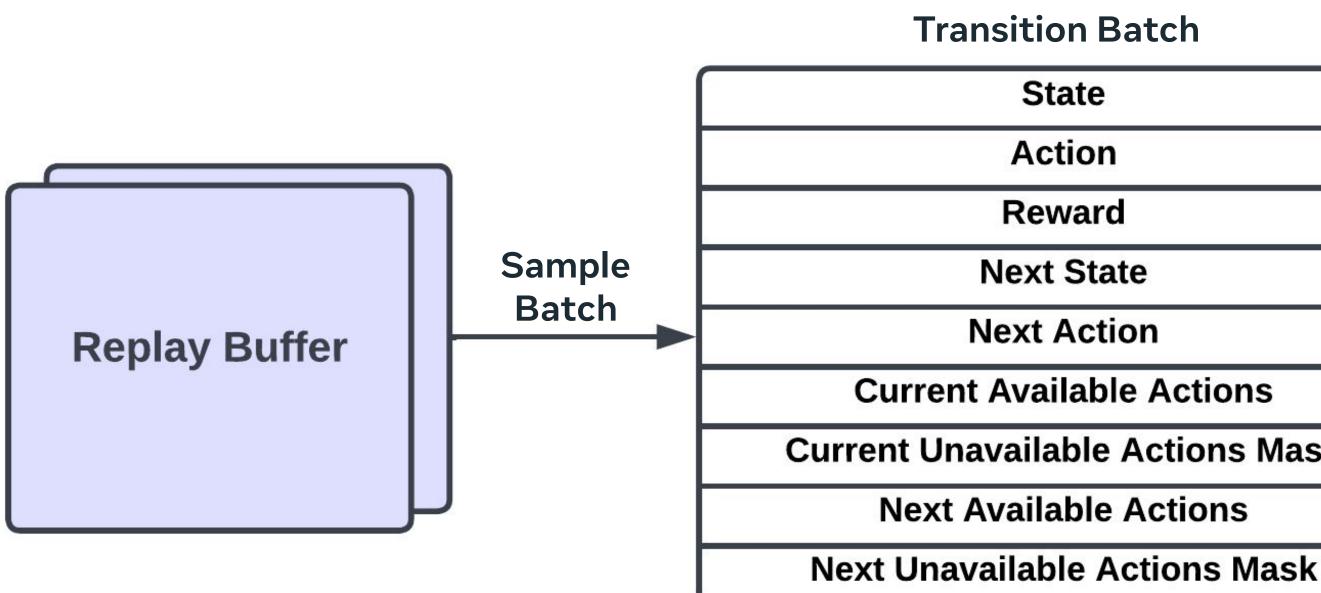
- We implement Reward Constrained Policy Optimization (<u>Tessler et. al, 2019</u>) which can be used with different policy learners.
- α ,

Dynamic Action Spaces

- Many real world problems (like recommender systems) require working with dynamic action spaces.
- We enable Pearl to handle discrete dynamic action spaces.



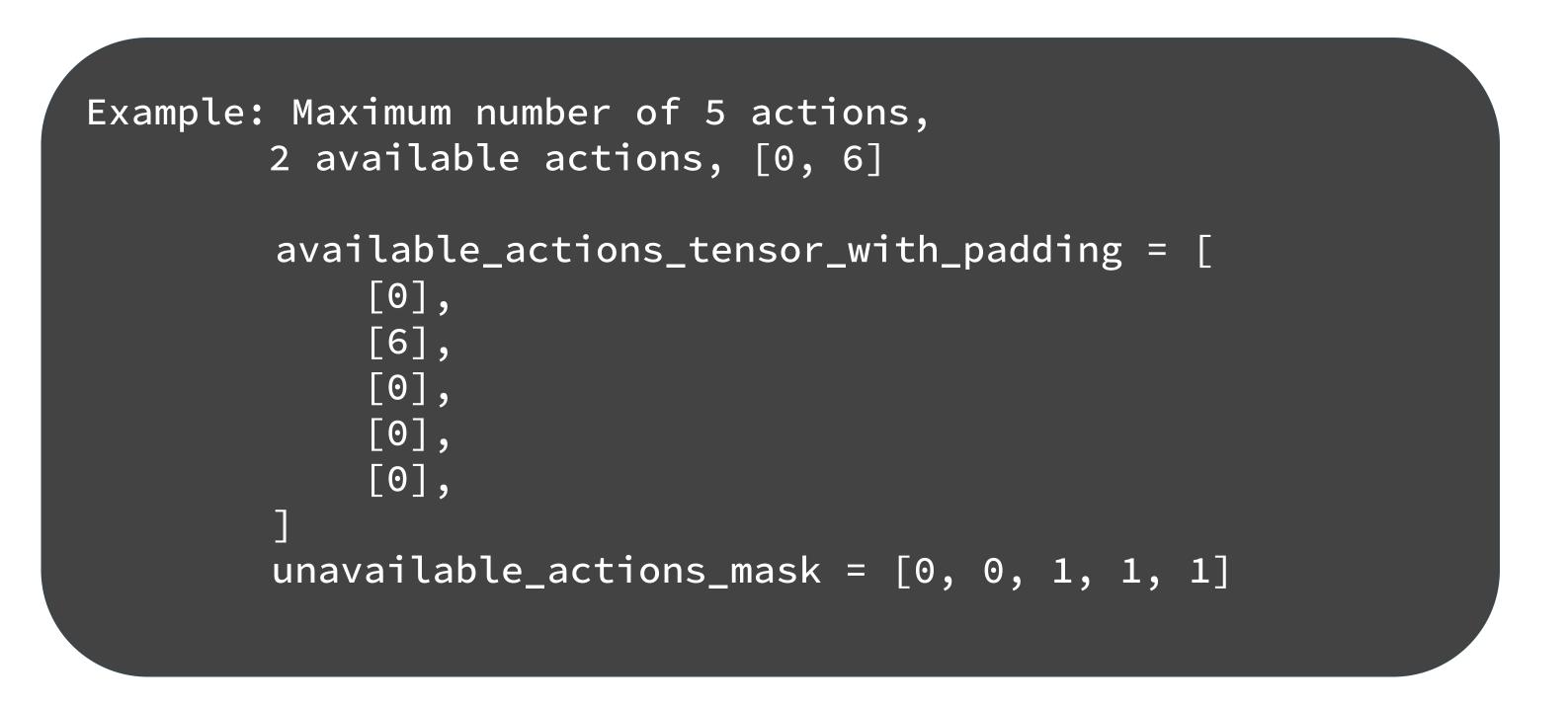
Dynamic Action Spaces: Replay Buffer Design



Transition Batch

State
Action
Reward
ext State
xt Action
vailable Actions
ailable Actions Mask
ailable Actions
able Actions Mask

Dynamic Action Spaces: Replay Buffer Design



Dynamic Action Spaces: Value-Based Model Design

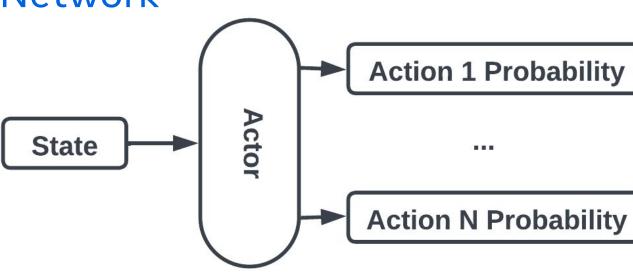
Transition Batch

State]
Action	7
Reward	1
Next State	1
Next Action	1
Current Available Actions	1
Current Unavailable Actions Mask	1
Next Available Actions	Set unavailable action's
Next Unavailable Actions Mask	Q function to -inf

Argmax over all actions

Dynamic Action Spaces: Dynamic Action Actor Neural Network

• Traditional Actor Neural Network

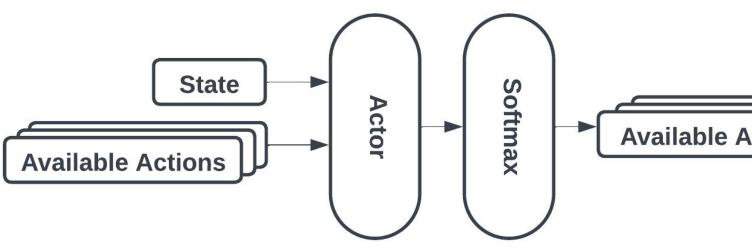


Dynamic Action Spaces: Dynamic Action Actor Neural Network

Actor

State

• Traditional Actor Neural Network



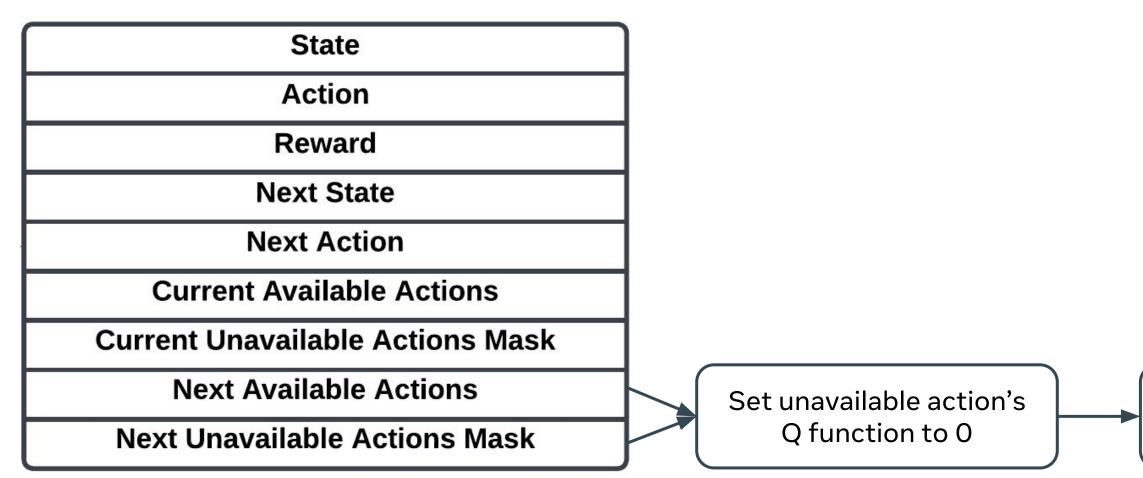
Action N Probability

....

Available Actions Probs

Dynamic Action Spaces: Actor-Critic Design (learn_critic)

Transition Batch

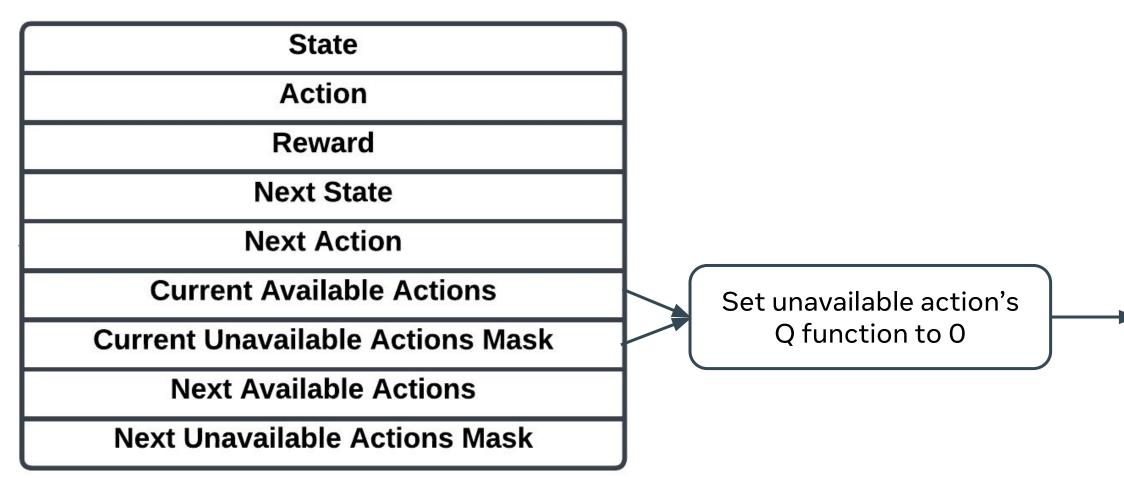


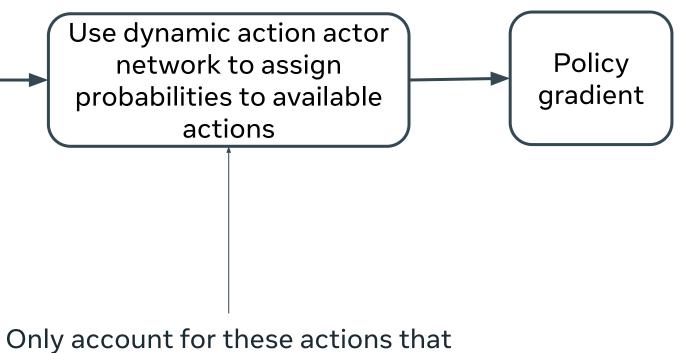
Expectation of Next State value with dynamic action actor network

Only account for these actions that are available!

Dynamic Action Spaces: Actor-Critic Design (learn_critic)

Transition Batch

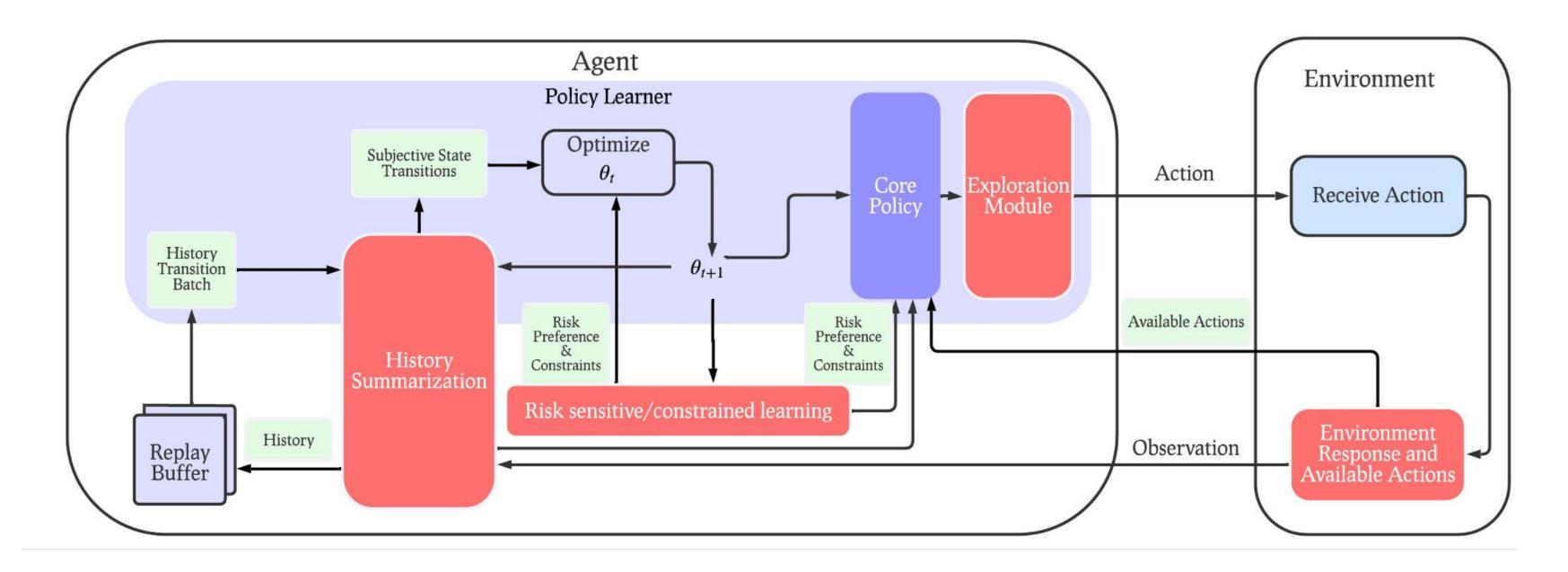




are available!

History Summarization Module

• A history summarization module enables learning in partially observable environments.



History Summarization with LSTM

```
agent = PearlAgent(
    policy_learner=DeepQLearning(
          state_dim=observation_dim,
          action_space=env.action_space,
          hidden_dims=[64, 64],
          exploration_module=EGreedyExploration(epsilon=0.05),
    ),
    history_summarization_module=LSTMHistorySummarizationModule(
          observation_dim=observation_dim,
          action_dim=action_dim,
          hidden_dim=128,
          history_length=8,
```


Histories instead of observations are stored in the replay buffer

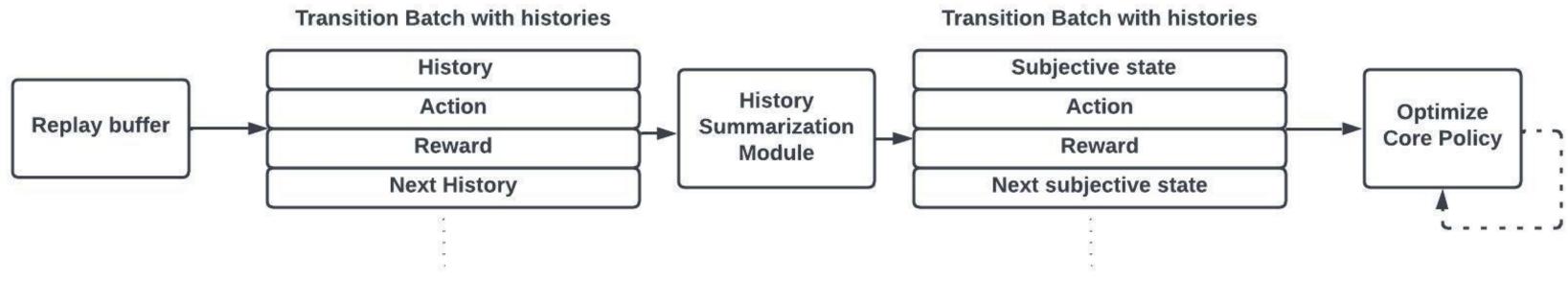
```
agent's observe function
def observe(self, action_result):
    # get current history
    current_history = self.history_summarization_module.get_history()
    # update history using the latest observation and action
    self.history_summarization_module.update_history(
        action_result.observation,
        action_result.action,
    new_history = self.history_summarization_module.get_history()
    # store histories instead of observations in the replay buffer
    self.replay_buffer.push(state=current_history, .. )
```


Histories are summarized into a subjective state during policy learning

batch of histories summarized to batch of subjective state # by doing a forward pass through history summarization module #

batch.state = history_summarization_module.summarize_history(history=batch.state,

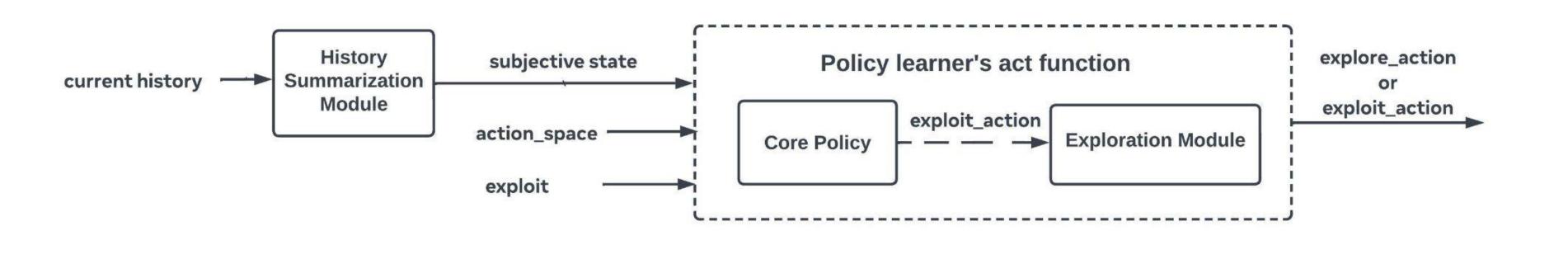
```
batch.next_state = ..
```



Histories are summarized during agent-environment interaction

get current history

- # compute agent's subjective state by summarizing current history
- # subjective state passed to policy learner's act function



ing current history act function


```
agent = PearlAgent(
    policy_learner=QuantileRegressionDeepQLearning(
          state_dim=observation_dim,
          action_space=env.action_space,
          hidden_dims=[64, 64],
          exploration_module=EGreedyExploration(epsilon=0.05),
    ),
    history_summarization_module=LSTMHistorySummarizationModule(
            observation_dim=observation_dim,
            action_dim=action_dim,
            hidden_dim=128,
            history_length=8,
    ),
    safety_module=QuantileNetworkMeanVarianceSafetyModule(
          variance_weighting_coefficient=0.1
    ),
    replay_buffer=FIFIOffPolicyReplayBuffer(
          size=100000
    ),
```


08 Summary

Summary

- Pearl is a Reinforcement Learning AI Agent Library that adapts to many real-world sequential decision making challenges
- Pearl's modular design offers researchers and practitioners an easy means to combine multiple reinforcement learning features into a single agent
- Pearl's native pytorch support and clean interface allows easy product deployment

github.com/facebookresearch/pearl

