Module pearl.policy_learners.sequential_decision_making.ddpg
Expand source code
from typing import Any, Dict, List, Optional, Type
import torch
from pearl.action_representation_modules.action_representation_module import (
    ActionRepresentationModule,
)
from pearl.api.action_space import ActionSpace
from pearl.neural_networks.common.value_networks import VanillaQValueNetwork
from pearl.neural_networks.sequential_decision_making.actor_networks import (
    ActorNetwork,
    VanillaContinuousActorNetwork,
)
from pearl.neural_networks.sequential_decision_making.q_value_network import (
    QValueNetwork,
)
from pearl.neural_networks.sequential_decision_making.twin_critic import TwinCritic
from pearl.policy_learners.exploration_modules.common.normal_distribution_exploration import (  # noqa E501
    NormalDistributionExploration,
)
from pearl.policy_learners.exploration_modules.exploration_module import (
    ExplorationModule,
)
from pearl.policy_learners.sequential_decision_making.actor_critic_base import (
    ActorCriticBase,
    twin_critic_action_value_update,
)
from pearl.replay_buffers.transition import TransitionBatch
class DeepDeterministicPolicyGradient(ActorCriticBase):
    """
    A Class for Deep Deterministic Deep Policy Gradient policy learner.
    paper: https://arxiv.org/pdf/1509.02971.pdf
    """
    def __init__(
        self,
        state_dim: int,
        action_space: ActionSpace,
        actor_hidden_dims: List[int],
        critic_hidden_dims: List[int],
        exploration_module: Optional[ExplorationModule] = None,
        actor_learning_rate: float = 1e-3,
        critic_learning_rate: float = 1e-3,
        actor_network_type: Type[ActorNetwork] = VanillaContinuousActorNetwork,
        critic_network_type: Type[QValueNetwork] = VanillaQValueNetwork,
        actor_soft_update_tau: float = 0.005,
        critic_soft_update_tau: float = 0.005,
        discount_factor: float = 0.99,
        training_rounds: int = 1,
        batch_size: int = 256,
        action_representation_module: Optional[ActionRepresentationModule] = None,
    ) -> None:
        super(DeepDeterministicPolicyGradient, self).__init__(
            state_dim=state_dim,
            action_space=action_space,
            actor_hidden_dims=actor_hidden_dims,
            critic_hidden_dims=critic_hidden_dims,
            actor_learning_rate=actor_learning_rate,
            critic_learning_rate=critic_learning_rate,
            actor_network_type=actor_network_type,
            critic_network_type=critic_network_type,
            use_actor_target=True,
            use_critic_target=True,
            actor_soft_update_tau=actor_soft_update_tau,
            critic_soft_update_tau=critic_soft_update_tau,
            use_twin_critic=True,  # we need to make this optional to users
            exploration_module=exploration_module
            if exploration_module is not None
            else NormalDistributionExploration(mean=0.0, std_dev=0.1),
            discount_factor=discount_factor,
            training_rounds=training_rounds,
            batch_size=batch_size,
            is_action_continuous=True,
            on_policy=False,
            action_representation_module=action_representation_module,
        )
    def _actor_learn_batch(self, batch: TransitionBatch) -> Dict[str, Any]:
        # sample a batch of actions from the actor network; shape (batch_size, action_dim)
        action_batch = self._actor.sample_action(batch.state)
        # samples q values for (batch.state, action_batch) from twin critics
        q1, q2 = self._critic.get_q_values(
            state_batch=batch.state, action_batch=action_batch
        )
        # clipped double q learning (reduce overestimation bias); shape (batch_size)
        q = torch.minimum(q1, q2)
        # optimization objective: optimize actor to maximize Q(s, a)
        loss = -q.mean()
        self._actor_optimizer.zero_grad()
        loss.backward()
        self._actor_optimizer.step()
        return {"actor_loss": loss.mean().item()}
    def _critic_learn_batch(self, batch: TransitionBatch) -> Dict[str, Any]:
        with torch.no_grad():
            # sample a batch of next actions from target actor network;
            next_action = self._actor_target.sample_action(batch.next_state)
            # (batch_size, action_dim)
            # get q values of (batch.next_state, next_action) from targets of twin critic
            next_q1, next_q2 = self._critic_target.get_q_values(
                state_batch=batch.next_state,
                action_batch=next_action,
            )  # shape (batch_size)
            # clipped double q learning (reduce overestimation bias); shape (batch_size)
            next_q = torch.minimum(next_q1, next_q2)
            # compute bellman target:
            # r + gamma * (min{Qtarget_1(s', a from target actor network),
            #                  Qtarget_2(s', a from target actor network)})
            expected_state_action_values = (
                next_q * self._discount_factor * (1 - batch.done.float())
            ) + batch.reward  # shape (batch_size)
        assert isinstance(self._critic, TwinCritic), "DDPG requires TwinCritic critic"
        # update twin critics towards bellman target
        loss_critic_update = twin_critic_action_value_update(
            state_batch=batch.state,
            action_batch=batch.action,
            expected_target_batch=expected_state_action_values,
            optimizer=self._critic_optimizer,
            critic=self._critic,
        )
        return loss_critic_update
Classes
class DeepDeterministicPolicyGradient (state_dim: int, action_space: ActionSpace, actor_hidden_dims: List[int], critic_hidden_dims: List[int], exploration_module: Optional[ExplorationModule] = None, actor_learning_rate: float = 0.001, critic_learning_rate: float = 0.001, actor_network_type: Type[ActorNetwork] = pearl.neural_networks.sequential_decision_making.actor_networks.VanillaContinuousActorNetwork, critic_network_type: Type[QValueNetwork] = pearl.neural_networks.common.value_networks.VanillaQValueNetwork, actor_soft_update_tau: float = 0.005, critic_soft_update_tau: float = 0.005, discount_factor: float = 0.99, training_rounds: int = 1, batch_size: int = 256, action_representation_module: Optional[ActionRepresentationModule] = None)- 
A Class for Deep Deterministic Deep Policy Gradient policy learner. paper: https://arxiv.org/pdf/1509.02971.pdf
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code
class DeepDeterministicPolicyGradient(ActorCriticBase): """ A Class for Deep Deterministic Deep Policy Gradient policy learner. paper: https://arxiv.org/pdf/1509.02971.pdf """ def __init__( self, state_dim: int, action_space: ActionSpace, actor_hidden_dims: List[int], critic_hidden_dims: List[int], exploration_module: Optional[ExplorationModule] = None, actor_learning_rate: float = 1e-3, critic_learning_rate: float = 1e-3, actor_network_type: Type[ActorNetwork] = VanillaContinuousActorNetwork, critic_network_type: Type[QValueNetwork] = VanillaQValueNetwork, actor_soft_update_tau: float = 0.005, critic_soft_update_tau: float = 0.005, discount_factor: float = 0.99, training_rounds: int = 1, batch_size: int = 256, action_representation_module: Optional[ActionRepresentationModule] = None, ) -> None: super(DeepDeterministicPolicyGradient, self).__init__( state_dim=state_dim, action_space=action_space, actor_hidden_dims=actor_hidden_dims, critic_hidden_dims=critic_hidden_dims, actor_learning_rate=actor_learning_rate, critic_learning_rate=critic_learning_rate, actor_network_type=actor_network_type, critic_network_type=critic_network_type, use_actor_target=True, use_critic_target=True, actor_soft_update_tau=actor_soft_update_tau, critic_soft_update_tau=critic_soft_update_tau, use_twin_critic=True, # we need to make this optional to users exploration_module=exploration_module if exploration_module is not None else NormalDistributionExploration(mean=0.0, std_dev=0.1), discount_factor=discount_factor, training_rounds=training_rounds, batch_size=batch_size, is_action_continuous=True, on_policy=False, action_representation_module=action_representation_module, ) def _actor_learn_batch(self, batch: TransitionBatch) -> Dict[str, Any]: # sample a batch of actions from the actor network; shape (batch_size, action_dim) action_batch = self._actor.sample_action(batch.state) # samples q values for (batch.state, action_batch) from twin critics q1, q2 = self._critic.get_q_values( state_batch=batch.state, action_batch=action_batch ) # clipped double q learning (reduce overestimation bias); shape (batch_size) q = torch.minimum(q1, q2) # optimization objective: optimize actor to maximize Q(s, a) loss = -q.mean() self._actor_optimizer.zero_grad() loss.backward() self._actor_optimizer.step() return {"actor_loss": loss.mean().item()} def _critic_learn_batch(self, batch: TransitionBatch) -> Dict[str, Any]: with torch.no_grad(): # sample a batch of next actions from target actor network; next_action = self._actor_target.sample_action(batch.next_state) # (batch_size, action_dim) # get q values of (batch.next_state, next_action) from targets of twin critic next_q1, next_q2 = self._critic_target.get_q_values( state_batch=batch.next_state, action_batch=next_action, ) # shape (batch_size) # clipped double q learning (reduce overestimation bias); shape (batch_size) next_q = torch.minimum(next_q1, next_q2) # compute bellman target: # r + gamma * (min{Qtarget_1(s', a from target actor network), # Qtarget_2(s', a from target actor network)}) expected_state_action_values = ( next_q * self._discount_factor * (1 - batch.done.float()) ) + batch.reward # shape (batch_size) assert isinstance(self._critic, TwinCritic), "DDPG requires TwinCritic critic" # update twin critics towards bellman target loss_critic_update = twin_critic_action_value_update( state_batch=batch.state, action_batch=batch.action, expected_target_batch=expected_state_action_values, optimizer=self._critic_optimizer, critic=self._critic, ) return loss_critic_updateAncestors
- ActorCriticBase
 - PolicyLearner
 - torch.nn.modules.module.Module
 - abc.ABC
 
Subclasses
Inherited members